Cho ba điểm A, B, C không thẳng hàng. Gọi O là giao điểm của đường trung trực của đoạn thẳng AB và BC (Hình 1).
a) So sánh độ dài của đoạn thẳng OA, OB và OC.
b) Vẽ đường tròn đi qua ba điểm A, B, C.
Cho ba điểm A, B, C không thẳng hàng. Gọi O là giao điểm của đường trung trực của đoạn thẳng AB và BC (Hình 1).
a) So sánh độ dài của đoạn thẳng OA, OB và OC.
b) Vẽ đường tròn đi qua ba điểm A, B, C.
Cho ba điểm A, B, C không thẳng hàng. Gọi O là giao điểm của đường trung Xác định tâm và bán kính của đường tròn ngoại tiếp mỗi tam giác sau:
a) Tam giác đều MNP có cạnh bằng 4;
b) Tam giác EFG có EF = 5 cm; EG = 3 cm; FG = 4cm.
Thảo luận (1)Hướng dẫn giảia) Vẽ đường cao MH của giác MNP, gọi O là điểm nằm trên MH sao cho
OM = \(\frac{2}{3}\) MH.
Do tam giác MNP đều nên O vừa là trọng tâm vừa là giao điểm của ba đường trung trực.
Bán kính đường tròn ngoại tiếp tam giác MNP là:
R = OH = \(\frac{{a\sqrt 3 }}{3} = \frac{{4\sqrt 3 }}{3}\) (cm).
b)
Ta có: \({5^2} = {3^2} + {4^2}\) nên \(E{F^2} = E{G^2} + F{G^2}\)
Suy ra tam giác EFG vuông tại G.
Gọi I là trung điểm của cạnh huyền EF. Ta có GI là đường trung tuyến ứng với cạnh huyền của tam giác EFG vuông tại G,
suy ra IG = IE = IF = \(\frac{{EF}}{2}\) = 2,5 cm
Vậy đường tròn tâm I bán kính 5 cm ngoại tiếp tam giác EFG.
(Trả lời bởi datcoder)
Có ba tổ dựng lều ở ba vị trí A, B, C như Hình 6. Ban tổ chức đặt ba thùng có dung tích bằng nhau tại một điểm tập kết chung. Mỗi tổ có sáu người, được phát một chiếc gàu giống nhau, các thành viên trong tổ chia thành từng cặp cõng nhau, múc nước từ tại của mình về đổ vào thùng tại điểm tập kết. Thùng của tổ nào đầy trước thì tổ đó chiến thắng. Để trò chơi công bằng, cần tìm điểm tập kết cách đều ba lều. Hãy xác định điểm đó.
Thảo luận (1)Hướng dẫn giảiĐiểm tập kết cách đều 3 lều tức khoảng cách từ điểm tập kết đều mỗi lều là như nhau tam giác. Điểm tập kết O là tâm đường tròn ngoại tiếp tam giác ABC.
Suy ra điểm tập kết O là giao điểm của ba đường trung trực của tam giác ABC. Khi vẽ, ta chỉ cần vẽ hai đường trung trực của tam giác ABC là ta có thể xác định được điểm O.
(Trả lời bởi datcoder)
Gọi I là giao điểm ba đường phân giác của tam giác ABC. Vẽ ID, IE, IF lần lượt vuông góc với các cạnh BC, AC và AB (Hình 7).
a) Chứng minh rằng IE = IF = ID.
b) Vẽ đường tròn tâm I bán kính IE. Có nhận xét gì về vị trí của đường tròn này với ba cạnh của tam giác ABC?
Thảo luận (1)Hướng dẫn giảia) Xét tam giác FBI vuông tại F và tam giác DBI vuông tại D có:
\(\widehat {FBI} = \widehat {IBD}\) (do BI là phân giác góc \(\widehat {FBD}\));
IB chung.
Suy ra \(\Delta \) FBI = \(\Delta \) DBI (cạnh huyền – góc nhọn).
Nên IF = ID (hai cạnh tương ứng) (1).
Xét \(\Delta \) IDC vuông tại D và \(\Delta \) IEC vuông tại E có:
\(\widehat {DCI} = \widehat {IEC}\) (do IC là phân giác góc \(\widehat {DEC}\));
IC chung.
Suy ra \(\Delta \) IDC = \(\Delta \) IEC (cạnh huyền – góc nhọn).
Nên ID = IE (hai cạnh tương ứng) (2).
Từ (1) và (2) suy ra IE = IF = ID.
b) Đường tròn này tiếp xúc với ba cạnh của tam giác tại các điểm F, D, E.
(Trả lời bởi datcoder)
Xác định tâm và bán kính đường tròn nội tiếp tam giác đều MNP có độ dài cạnh bằng 8 cm.
Thảo luận (1)Hướng dẫn giảiGọi O là giao điểm của đường cao MA, NP và PC của tam giác MNP.
Ta có tam giác MNP đều nên MA, NB, PC là ba đường trung tuyến đồng thời là ba đường phân giác của tam giác.
Do đó, O là trọng tâm, đồng thời là tâm đường tròn nội tiếp tam giác MNP với bán kính r = OA = OB = OC.
Bán kính đường tròn ngoại tiếp tam giác là
r = \(\frac{{a\sqrt 3 }}{6} = \frac{{8\sqrt 3 }}{6} = \frac{{4\sqrt 3 }}{3}\) (cm).
(Trả lời bởi datcoder)
Theo gợi ý trong Hình 10, nêu cách xác định hai điểm I và O của tình huống trong khởi động (trang 65).
Ba cụm dân cư A, B, C nối với nhau bởi ba con đường AB, BC, CA như trong hình dưới đây. Người ta muốn tìm địa điểm O để xây một trường học và địa điểm I để lập một trạm cứu hộ xe, sao cho O cách đều ba điểm A, B, C và I cách đều ba con đường. Làm thế nào để xác định hai điểm O và I?
Thảo luận (1)Hướng dẫn giải- Vẽ 3 đường trung trực của 3 đường thẳng AB, AC và BC, cho chúng cắt nhau từng đôi một. Điểm giao nhau đó là điểm O.
- Vẽ 3 đường phân giác trong của các góc \(\widehat A;\widehat B;\widehat C\) cho chúng cắt nhau từng đôi một và điểm giao nhau đó là điểm I.
(Trả lời bởi datcoder)
Cho tam giác đều ABC có cạnh bằng 6 cm.
a) Nêu các vẽ đường tròn ngoại tiếp tam giác ABC.
b) Nêu các vẽ đường tròn nội tiếp tam giác ABC.
c) Tính bán kính R của đường tròn ngoại tiếp và bán kính r của đường tròn nội tiếp tam giác ABC.
Thảo luận (1)Hướng dẫn giảia) Cách vẽ đường tròn ngoại tiếp tam giác ABC:
− Vẽ đường trung trực a của đoạn thẳng AB.
− Vẽ đường trung trực b của đoạn thẳng AC.
− Gọi O là giao điểm của a và b.
− Vẽ đường tròn tâm O bán kính OA.
Khi đó, đường tròn (O; OA) là đường tròn ngoại tiếp tam giác ABC.
b) Cách vẽ đường tròn nội tiếp tam giác ABC:
− Vẽ đường phân giác AH của góc BAC.
− Vẽ đường phân giác BE của góc ABC.
− Gọi O là giao điểm của AH và BE.
− Vẽ đường tròn tâm O bán kính OH.
Khi đó, đường tròn (O; OH) là đường tròn nội tiếp tam giác ABC.
c) Bán kính đường tròn ngoại tiếp tam giác ABC là:
R = OA = \(\frac{{a\sqrt 3 }}{3} = \frac{{6\sqrt 3 }}{3} = 2\sqrt 3 \) (cm).
Bán kính đường tròn nội tiếp tam giác ABC là:
r = OH = \(\frac{{a\sqrt 3 }}{6} = \frac{{6\sqrt 3 }}{6} = \sqrt 3 \) (cm).
(Trả lời bởi datcoder)
Cho tam giác ABC ( AC < BC) nội tiếp đường tròn (O) có AB là đường kính. Từ điểm O vẽ đường thẳng song song với AC và cắt đường tròn (O) tại I (điểm I thuộc cung nhỏ CB).
a) Chứng minh OI vuông góc với BC.
b) Vẽ tiếp tuyến của đường tròn (O) tại B và cắt OI tại M. Chứng minh MC là tiếp tuyến của đường tròn (O).
Thảo luận (1)Hướng dẫn giảia) Xét đường tròn (O) có:
\(\widehat {ACB}\) là góc nội tiếp chắn cung AB, mà AB là đường kính của đường tròn (O).
\(\widehat {ACB}\) = 90o hay tam giác ABC vuông tại C, mà OI // AC (giả thiết).
Suy ra OI \( \bot \) BC (quan hệ từ vuông góc – song song).
b) Vì OB = OC = R suy ra tam giác OBC cân tại O mà OI là đường cao của tam giác OBC.
Suy ra OI đồng thời là phân giác của tam giác OBC.
Suy ra \(\widehat {COI} = \widehat {BOI}\) hay \(\widehat {COM} = \widehat {BOM}\)
Xét \(\Delta \) COM và \(\Delta \) BOM có:
OC = OB = R;
\(\widehat {COM} = \widehat {BOM}\) (chứng minh trên);
OM chung.
Suy ra \(\Delta \)COM = \(\Delta \)BOM (c – g – c).
Do đó, \(\widehat {OBM} = \widehat {OCM}\) (hai góc tương ứng)
Mà \(\widehat {OBM}\) = 90o (do MB là tiếp tuyến của đường tròn).
Suy ra \(\widehat {OCM}\) = 90o hay OM \( \bot \) MC mà C thuộc đường tròn (O)
Suy ra MC là tiếp tuyến đường tròn (O).
(Trả lời bởi datcoder)
Cho tam giác ABC ngoại tiếp đường tròn (I). Gọi D, E, F lần lượt là các tiếp điểm của đường tròn (I) với các cạnh AB, BC, AC (Hình 11).
a) Chứng minh 2AD = AB + AC – BC.
b) Tìm các hệ thức tương tự như ở câu a.
Thảo luận (1)Hướng dẫn giảia) Theo tính chất hai tiếp tuyến cắt nhau, ta có: AD = AF, BD = BE, CE = CF.
Suy ra AB + AC – BC = (AD + BD) + (AF + CF) – (BE + CE)
= (AD + AF) + (CF – CE) + (BD – BE) = 2AD.
Vậy 2AD = AB + AC – BC (đpcm).
b) Các hệ thức tương tự như ở câu a là:
2AF = AB + AC – BC;
2BD = 2BE = AB + BC – AC;
2EC = 2FC = AC + BC – AB.
(Trả lời bởi datcoder)
Tính diện tích tam giác đều có bán kính đường tròn nội tiếp bằng 1 cm.
Thảo luận (1)Hướng dẫn giảiTa có bán kính đường tròn nội tiếp tam giác đều là r = \(\frac{{a\sqrt 3 }}{6}\).
(Với a là độ dài cạnh của tam giác đều)
Mà r = 1 cm suy ra \(\frac{{a\sqrt 3 }}{6} = 1\) hay a = \(\frac{6}{{\sqrt 3 }} = 2\sqrt 3 \) (cm).
Vì tâm của đường tròn nội tiếp tam giác là giao điểm của ba đường phân giác suy ra ba đường phân giác cũng đồng thời là ba đường trung trực của tam giác.
Đường cao của tam giác đều là: \(\frac{{a\sqrt 3 }}{6} = 1\) hay a = \(\frac{6}{{\sqrt 3 }} = 2\sqrt 3 \) (cm).
Diện tích tam giác đều là:
\(S = \frac{1}{2}.a.h = \frac{{2\sqrt 3 .3}}{2} = 3\sqrt 3 \) (cm2).
(Trả lời bởi datcoder)