Bài 1. Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác

Khám phá 1 (SGK Chân trời sáng tạo - Tập 2 - Trang 65)

Hướng dẫn giải

a) Vì O thuộc đường trung trực của AB.

Suy ra OA = OB (tính chất đường trung trực) (1).

Vì O thuộc đường trung trực của BC.

Suy ra OC = OB (tính chất đường trung trực) (2).

Từ (1) và (2) suy ra OA = OB = OC 

b)

(Trả lời bởi datcoder)
Thảo luận (1)

Thực hành 1 (SGK Chân trời sáng tạo - Tập 2 - Trang 67)

Hướng dẫn giải

a) Vẽ đường cao MH của  giác  MNP, gọi O là điểm nằm trên MH sao cho

OM = \(\frac{2}{3}\) MH.

Do tam giác MNP đều nên O vừa là trọng tâm vừa là giao điểm của ba đường trung trực.

Bán kính đường tròn ngoại tiếp tam giác MNP là:

R = OH = \(\frac{{a\sqrt 3 }}{3} = \frac{{4\sqrt 3 }}{3}\) (cm).

b)

Ta có: \({5^2} = {3^2} + {4^2}\) nên \(E{F^2} = E{G^2} + F{G^2}\)

Suy ra tam giác EFG vuông tại G.

Gọi I là trung điểm của cạnh huyền EF. Ta có GI là đường trung tuyến ứng với cạnh huyền của tam giác EFG vuông tại G,

suy ra IG = IE = IF = \(\frac{{EF}}{2}\) = 2,5 cm

Vậy đường tròn tâm I bán kính 5 cm ngoại tiếp tam giác EFG.

(Trả lời bởi datcoder)
Thảo luận (1)

Vận dụng 1 (SGK Chân trời sáng tạo - Tập 2 - Trang 67)

Hướng dẫn giải

Điểm tập kết cách đều 3 lều tức khoảng cách từ điểm tập kết đều mỗi lều là như nhau tam giác. Điểm tập kết O là tâm đường tròn ngoại tiếp tam giác ABC.

Suy ra điểm tập kết O là giao điểm của ba đường trung trực của tam giác ABC. Khi vẽ, ta chỉ cần vẽ hai đường trung trực của tam giác ABC là ta có thể xác định được điểm O.

(Trả lời bởi datcoder)
Thảo luận (1)

Khám phá 2 (SGK Chân trời sáng tạo - Tập 2 - Trang 67)

Hướng dẫn giải

a) Xét tam giác FBI vuông tại F và tam giác DBI vuông tại D có:

\(\widehat {FBI} = \widehat {IBD}\) (do BI là phân giác góc \(\widehat {FBD}\));

IB chung.

Suy ra \(\Delta \) FBI = \(\Delta \) DBI (cạnh huyền – góc nhọn).

Nên IF = ID (hai cạnh tương ứng) (1).

Xét \(\Delta \) IDC vuông tại D và \(\Delta \) IEC vuông tại E có:

\(\widehat {DCI} = \widehat {IEC}\) (do IC là phân giác góc \(\widehat {DEC}\));

IC chung.

Suy ra \(\Delta \) IDC = \(\Delta \) IEC (cạnh huyền – góc nhọn).

Nên ID = IE (hai cạnh tương ứng) (2).

Từ (1) và (2) suy ra  IE = IF = ID.

b) Đường tròn này tiếp xúc với ba cạnh của tam giác tại các điểm F, D, E.

(Trả lời bởi datcoder)
Thảo luận (1)

Thực hành 2 (SGK Chân trời sáng tạo - Tập 2 - Trang 68)

Hướng dẫn giải

Gọi O là giao điểm của đường cao MA, NP và PC của tam giác MNP.

Ta có tam giác MNP đều nên MA, NB, PC  là ba đường trung tuyến đồng thời là ba đường phân giác của tam giác.

Do đó, O là trọng tâm, đồng thời là tâm đường tròn nội tiếp tam giác MNP với bán kính r = OA = OB = OC.

Bán kính đường tròn ngoại tiếp tam giác là

r  = \(\frac{{a\sqrt 3 }}{6} = \frac{{8\sqrt 3 }}{6} = \frac{{4\sqrt 3 }}{3}\) (cm). 

(Trả lời bởi datcoder)
Thảo luận (1)

Vận dụng 2 (SGK Chân trời sáng tạo - Tập 2 - Trang 68)

Hướng dẫn giải

- Vẽ 3 đường trung trực của 3 đường thẳng AB, AC và BC, cho chúng cắt nhau từng đôi một. Điểm giao nhau đó là điểm O.

- Vẽ 3 đường phân giác trong của các góc \(\widehat A;\widehat B;\widehat C\) cho chúng cắt nhau từng đôi một và điểm giao nhau đó là điểm I.

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 1 (SGK Chân trời sáng tạo - Tập 2 - Trang 68)

Hướng dẫn giải

a) Cách vẽ đường tròn ngoại tiếp tam giác ABC:

− Vẽ đường trung trực a của đoạn thẳng AB.

− Vẽ đường trung trực b của đoạn thẳng AC.

− Gọi O là giao điểm của a và b.

− Vẽ đường tròn tâm O bán kính OA.

Khi đó, đường tròn (O; OA) là đường tròn ngoại tiếp tam giác ABC.

b) Cách vẽ đường tròn nội tiếp tam giác ABC:

− Vẽ đường phân giác AH của góc BAC.

− Vẽ đường phân giác BE của góc ABC.

− Gọi O là giao điểm của AH và BE.

− Vẽ đường tròn tâm O bán kính OH.

Khi đó, đường tròn (O; OH) là đường tròn nội tiếp tam giác ABC.

c) Bán kính đường tròn ngoại tiếp tam giác ABC là:

R = OA = \(\frac{{a\sqrt 3 }}{3} = \frac{{6\sqrt 3 }}{3} = 2\sqrt 3 \) (cm).

Bán kính đường tròn nội tiếp tam giác ABC là:

r = OH = \(\frac{{a\sqrt 3 }}{6} = \frac{{6\sqrt 3 }}{6} = \sqrt 3 \) (cm).

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 2 (SGK Chân trời sáng tạo - Tập 2 - Trang 69)

Hướng dẫn giải

a) Xét đường tròn (O) có:

\(\widehat {ACB}\) là góc nội tiếp chắn cung AB, mà AB là đường kính của đường tròn (O).

\(\widehat {ACB}\) = 90o hay tam giác ABC vuông tại C, mà OI // AC (giả thiết).

Suy ra OI \( \bot \) BC (quan hệ từ vuông góc – song song).

b) Vì OB = OC = R suy ra tam giác OBC cân tại O mà OI là đường cao của tam giác OBC.

Suy ra OI đồng thời là phân giác của tam giác OBC.

Suy ra \(\widehat {COI} = \widehat {BOI}\)  hay \(\widehat {COM} = \widehat {BOM}\)

Xét \(\Delta \) COM và \(\Delta \) BOM có:

OC = OB = R;

\(\widehat {COM} = \widehat {BOM}\) (chứng minh trên);

OM chung.

Suy ra \(\Delta \)COM = \(\Delta \)BOM (c – g – c).

Do đó, \(\widehat {OBM} = \widehat {OCM}\) (hai góc tương ứng)

Mà \(\widehat {OBM}\) = 90o (do MB là tiếp tuyến của đường tròn).

Suy ra \(\widehat {OCM}\) = 90o hay OM \( \bot \) MC mà C thuộc đường tròn (O)

Suy ra MC là tiếp tuyến đường tròn (O).

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 3 (SGK Chân trời sáng tạo - Tập 2 - Trang 69)

Hướng dẫn giải

a) Theo tính chất hai tiếp tuyến cắt nhau, ta có: AD = AF, BD = BE, CE = CF.

Suy ra AB + AC – BC = (AD + BD) + (AF + CF) – (BE + CE)

          = (AD + AF) + (CF – CE) + (BD – BE) = 2AD.

Vậy 2AD = AB + AC – BC (đpcm).

b) Các hệ thức tương tự như ở câu a là:

2AF = AB + AC – BC;

2BD = 2BE = AB + BC – AC;

2EC = 2FC = AC + BC – AB.

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 4 (SGK Chân trời sáng tạo - Tập 2 - Trang 69)

Hướng dẫn giải

Ta có bán kính đường tròn nội tiếp tam giác đều là r = \(\frac{{a\sqrt 3 }}{6}\).

(Với a là độ dài cạnh của tam giác đều)

Mà r = 1 cm suy ra \(\frac{{a\sqrt 3 }}{6} = 1\) hay a = \(\frac{6}{{\sqrt 3 }} = 2\sqrt 3 \) (cm).

Vì tâm của đường tròn nội tiếp tam giác là giao điểm của ba đường phân giác suy ra ba đường phân giác cũng đồng thời là ba đường trung trực của tam giác.

Đường cao của tam giác đều là: \(\frac{{a\sqrt 3 }}{6} = 1\) hay a = \(\frac{6}{{\sqrt 3 }} = 2\sqrt 3 \) (cm).

Diện tích tam giác đều là:

\(S = \frac{1}{2}.a.h = \frac{{2\sqrt 3 .3}}{2} = 3\sqrt 3 \)  (cm2).

(Trả lời bởi datcoder)
Thảo luận (1)