\(x+\sqrt{5-x^2}=5x\sqrt{5-x^2}-7\)
Tìm x:
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-x^2-2x\)
1) a,\(\sqrt{x}-1=5\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\) b, \(\dfrac{1}{2}\sqrt{5x}< 1\Leftrightarrow\sqrt{5x}< 2\Leftrightarrow5x=4\Leftrightarrow x=\dfrac{4}{5}\)
2) A=bấm máy tính B=\(\left(\sqrt{28}-\sqrt{7}+\sqrt{12}\right):\sqrt{7}\Leftrightarrow4-1+\sqrt{7\cdot12}\Leftrightarrow3+\sqrt{84}\)
giải các phương trình
1) \(\sqrt{4x-20}\) +3\(\sqrt{\dfrac{x-5}{9}}\) \(-\dfrac{1}{3}\sqrt{9x-45}=6\)
2)\(\sqrt{x+1}+\sqrt{x+6}=5\)
3) \(x^2-6x+\sqrt{x^2-6x+7}=5\)
4)\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=4\)
5)\(\sqrt{x^2-\dfrac{1}{4}+\sqrt{x^2+x+\dfrac{1}{4}}}=\dfrac{1}{2}\left(2x^3+x^2+2x+1\right)\)
6)\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)
7)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
1, \(a, \sqrt{3x-5} = \sqrt{7x-1} \)
\(b, \sqrt{5x-7}=m \) Biện luận theo m
\(c, \sqrt{x-3} + \sqrt{13-x} =2\sqrt{5}\)
\(d, \sqrt{x-2} + \sqrt{4-x} = x^{2} -6x+11 \)
\(e, \sqrt[3]{x-7} + \sqrt[3]{x-3} =\sqrt[6]{(x-3)(x-7)}\)
\(f, \sqrt[3]{x-1} + \sqrt[3]{x+1} =\sqrt[3]{5x}\)
\(g, \sqrt[3]{x+5} + \sqrt[3]{x+6} =\sqrt[3]{2x+11}\)
h, \(\sqrt[3]{(x-2)^{2}} + \sqrt[3]{(x+7)^{2}} - \sqrt[3]{(2-x)(x+7)}\)
\(k, \sqrt{\dfrac{x}{2x-1}} +\sqrt{\dfrac{2x-1}{x}} = 2\)
MN THÔNG CẢM R GIÚP EM VỚI Ạ
Giải pt:
a)\(\sqrt{\left(4-x\right).\left(6+x\right)}=x^2-2x-12\)
b)(x+1).(x+4)=5.\(\sqrt{x^2+5x+28}\)
c)x(x+5)=2.\(\sqrt[3]{x^2+5x-2}-2\)
d)3\(\sqrt{x}+\dfrac{3}{2\sqrt{3}}=2x+\dfrac{1}{2x}-7\)
Giải phương trình :
a) \(3x+\sqrt{3x-7}=7\)
b) \(5x-12-2\sqrt{2\left(5x-12\right)}+3\sqrt{2}\left(\sqrt{5x}-12-2\sqrt{2}\right)=0\)
c) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}=2\sqrt{2}}\)
Gải bất phương trình :
2\(\left(x+\sqrt{x^2+m^2}\right)\le\dfrac{5m^2}{\sqrt{x^2+m^2}}\) với m \(\ne\)0
Mọi người ai biết giúp tớ với !! Mai tớ phải nộp !
Giải phương trình sau:
a) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
b) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
Giải phương trình:
1, \(x^2\sqrt{x}+\left(x-5\right)^2\sqrt{5-x}=11\left(\sqrt{x}+\sqrt{5-x}\right)\)
2, \(2x+1+x\sqrt{x^2+2}+\left(x+1\right)\sqrt{x^2+2x+3}=0\)
3, \(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+\sqrt{2x-5}}=2\sqrt{2}\)
4, \(\sqrt{x^2-\dfrac{1}{4x}}+\sqrt{x-\dfrac{1}{4x}}=x\)
5, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-1-20}=5\sqrt{x+1}\)