\(\left\{{}\begin{matrix}x^2+y^2+xy+1=4y\left(1\right)\\y\left(x+y\right)=2x^2+7y+2\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow xy+y^2=2x^2+7y+2\left(3\right)\)
Thay \(\left(3\right)\) vào \(\left(1\right)\) ta có: \(\left(1\right)\Leftrightarrow x^2+2x^2+7y+2+1-4y=0\\ \Leftrightarrow x^2+y+1=0\\ \Leftrightarrow x^2+1=-y\)
Thay \(\left(4\right)\) vào \(\left(1\right)\): \(y^2+xy-5y=0\Leftrightarrow y\left(y+x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}y=0\\y=5-x\end{matrix}\right.\)
Với y=0 thì \(x^2+1=0\) vô nghiệm
Với y=5-x thì \(x^2+1=x-5\Leftrightarrow x^2-x+6\) vô nghiệm
Vậy hpt vô nghiệm