Bài tập cuối chương VII

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Xét dấu của các tam thức bậc hai sau:

a) \(f\left( x \right) = 6{x^2} + 41x + 44\)

b) \(g\left( x \right) =  - 3{x^2} + x - 1\)

c) \(h\left( x \right) = 9{x^2} + 12x + 4\)

Hà Quang Minh
26 tháng 9 2023 lúc 23:25

a) \(f\left( x \right) = 6{x^2} + 41x + 44\) có \(\Delta  = 625 > 0\), có hai nghiệm phân biệt là \({x_1} =  - \frac{{11}}{2},{x_2} =  - \frac{4}{3}\) và có \(a = 6 > 0\)

Ta có bảng xét dấu \(f\left( x \right)\)như sau:

 

Vậy \(f\left( x \right)\) dương trong khoảng \(\left( { - \infty ; - \frac{{11}}{2}} \right) \cup \left( { - \frac{4}{3}; + \infty } \right)\) và âm trong khoảng \(\left( { - \frac{{11}}{2}; - \frac{4}{3}} \right)\)

b) \(g\left( x \right) =  - 3{x^2} + x - 1\) có \(\Delta  =  - 11 < 0\) và có \(a =  - 3 < 0\)

Ta có bảng xét dấu như sau

 

Vậy \(g\left( x \right)\)luôn âm với mọi \(x \in \mathbb{R}\)

c) \(h\left( x \right) = 9{x^2} + 12x + 4\) có \(\Delta  = 0\), có nghiệm kép là \({x_1} = {x_2} =  - \frac{2}{3}\) và có \(a = 9 > 0\)

Ta có bảng xét dấu của \(h\left( x \right)\) như sau:

 

Vậy \(h\left( x \right)\) luôn dương khi \(x \ne  - \frac{2}{3}\)


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết