Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hồng Anh

Xét a, b, c là các số thực thuộc đoạn \(\left[1;2\right]\) và thỏa mãn \(a+b+c\le4\). Chứng minh rằng :

                        \(\frac{a}{bc+2}+\frac{b}{ca+2}+\frac{c}{ab+2}>\frac{2}{3}\)

Mai Nguyên Khang
7 tháng 4 2016 lúc 14:54

Từ giả thiết ta có : \(\begin{cases}\left(b-1\right)\left(c-2\right)\le0\\\left(b-2\right)\left(c-1\right)\le0\end{cases}\) \(\Leftrightarrow\begin{cases}bc+2\le2b+c\\bc+2\le b+2c\end{cases}\) \(\Leftrightarrow2\left(bc+2\right)\le3\left(b+c\right)\le3\left(4-a\right)\)

Do đó \(\frac{a^2}{bc+2}\ge\frac{2}{3}.\frac{a^2}{4-a}\), đẳng thức xảy ra \(\Leftrightarrow a=0,b=c=2\)

Tương tự  : \(\frac{b^2}{ac+2}\ge\frac{2}{3}.\frac{b^2}{4-b}\) và \(\frac{c^2}{ab+2}\ge\frac{2}{3}.\frac{c^2}{4-c}\)

Suy ra \(\frac{a^2}{bc+2}+\frac{b^2}{ac+2}+\frac{c^2}{ab+2}>\frac{2}{3}\left(\frac{a^2}{4-a}+\frac{b^2}{4-b}+\frac{c^2}{4-c}\right)\)  (*) (vì không tồn tại a,b,c để đẳng thức xảy ra)

Xét hàm số \(f\left(t\right)=\frac{t^2}{4-t},t\in\left[1;2\right]\)

Ta có \(f'\left(t\right)=\frac{t\left(8-t\right)}{\left(4-t\right)^2}>0\)  mọi \(t\in\left[1;2\right]\) nên hàm số đồng biến trên \(\left[1;2\right]\)

Suy ra \(f\left(t\right)\ge f\left(1\right)=\frac{1}{3}\) với mọi \(t\in\left[1;2\right]\)

Thay t bởi a, b, c vào vế phải của (*) ta được :

\(P=\frac{a^2}{bc+2}+\frac{b^2}{ac+2}+\frac{c^2}{ab+2}>\frac{2}{3}\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)=\frac{2}{3}\)

Vậy \(P>\frac{2}{3}\)


Các câu hỏi tương tự
Tùng Trần Sơn
Xem chi tiết
trần trang
Xem chi tiết
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
lê thị hoài
Xem chi tiết
Trần
Xem chi tiết
Cao Thi Thuy Duong
Xem chi tiết
Tình Nguyễn Hữu
Xem chi tiết
Trần Huy tâm
Xem chi tiết
Ngọc Ánh
Xem chi tiết