Lời giải:
Đặt $\sqrt{x^2+2}=a$. Khi đó ta có hệ sau:
\(\left\{\begin{matrix} x^2+(3-a)x=1+2a\\ a^2-x^2=2\end{matrix}\right.\)
\(\Rightarrow a^2-2+(3-a)x=1+2a\)
\(\Leftrightarrow a^2-2a-3-(a-3)x=0\)
\(\Leftrightarrow (a-3)(a+1)-(a-3)x=0\)
\(\Leftrightarrow (a-3)(a+1-x)=0\)
\(\Rightarrow \left[\begin{matrix} a=3\\ a+1=x\end{matrix}\right.\)
Nếu $a=3$ suy ra $x^2=a^2-2=7$ \(\Rightarrow x=\pm \sqrt{7}\)
Nếu \(a+1=x\Rightarrow (a+1)^2=x^2=a^2-2\)
\(\Rightarrow 1+2a=-2\Rightarrow a=-\frac{3}{2}\) (vô lý vì $a>0$)