\(\Delta'=\left(n-1\right)^2-2n+3=\left(n-2\right)^2\ge0\) \(\forall n\)
Theo hệ thức Viet \(\left\{{}\begin{matrix}x_1+x_2=2\left(n-1\right)\\x_1x_2=2n-3\end{matrix}\right.\)
\(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(P=4\left(n-1\right)^2-2\left(2n-3\right)\)
\(P=4n^2-12n+10=\left(2n-3\right)^2+1\ge1\)
\(P_{min}=1\) khi \(n=\frac{3}{2}\)