\(\left|x\right|+\left|-x\right|=3-x\)
\(\Rightarrow2\left|x\right|=3-x\)
\(\Rightarrow\left\{{}\begin{matrix}2x=3-x\\0-2x=3-x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=3\Leftrightarrow x=1\\x=-3\end{matrix}\right.\)
|x|+|-x|=3-x
=> 2|x|=3-x
th1 2x=-3+x
=> 2x-x=-3
=> x=-3
th2 2x=3-x
=> 2x+x=3
=> 3x=3
=> x=1
vậy x=1 hoặc x=-3
Ta có: \(\left|x\right|+\left|-x\right|=3-x\)
\(\Leftrightarrow\left|2x\right|=3-x\)
Có hai trường hợp:
\(2x=3-x\) \(2x=-\left(3-x\right)=-3+x\)
\(\Rightarrow2x+x=3\) \(\Rightarrow2x-x=-3\)
\(3x=3\) \(x=-3\)
\(x=\dfrac{3}{3}=1\)
Vậy: \(x=1\) hoặc \(x=-3\)