Bài 1: Cho a là số gồm 2n chữ số 1, b là số gồm n +1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài 2: Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
bài 3: Cho hai số tự nhiên a và b (với điều kiện a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài 4: Tìm n biết rằng n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài 5: Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5
Tìm số tự nhiên có 2 chữ số biết hiệu các bình phương của số đó và số viết bởi 2 chữ số đó nhưng theo thứ tự ngược lại là 1 số chính phương .
a) Tính tổng : 1+ 2 + 3 +…. + n , 1+ 3 + 5 +…. + (2n -1)
b) Tính tổng : 1.2 + 2.3 + 3.4 + …..+ n.(n+1) 1.2.3+ 2.3.4 + 3.4.5 + ….+ n(n+1)(n+2)
Với n là số tự nhiên khác 0.
Các thánh giúp em zới ko hỉu gì hết trơn T-T
a, CMR: \(\dfrac{10^{2006}+53}{9}\) là 1 số tự nhiên.
b, cho 2n+1 là số nguyên tố (n>2). c/m 2n -1 là hợp số
CMR : \(\dfrac{10^{2006}+53}{9}\) là số tự nhiên
CMR: \(\dfrac{10^{2006}+53}{9}\) là một số tự nhiên.
tìm số tự nhiên n và chữ số a biết rằng 1+2+3+...+n=aaa (aaa là số có 3 chữ số giống hệt nhau)
CÁC BẠN ƠI, GIÚP MÌNH VỚI MÌNH CẦN GẤP LẮM!!!! /A\
CMR không tồn tại số tự nhiên n để \(n^2+2002\) là số chính phương
Bài 1: Cho a là số gồm 2n chữ số 1, b là số gồm n +1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.