a) Xét ΔCBA vuông tại B có
\(\tan\widehat{ACB}=\frac{AB}{BC}=\frac{6}{8}=\frac{3}{4}\)
\(\Rightarrow\widehat{ACB}\simeq36^052'\)
Vậy: \(\widehat{ACB}\simeq36^052'\)
b)
Áp dụng định lí Pytago vào ΔCBA vuông tại B, ta được:
\(AC^2=BA^2+BC^2\)
\(\Leftrightarrow AC^2=6^2+8^2=100\)
hay \(AC=\sqrt{100}=10\)
Xét ΔCBA có AD là tia phân giác của \(\widehat{BAC}\)(gt)
nên \(\frac{AB}{BD}=\frac{AC}{CD}\)(Tính chất đường phân giác của tam giác)
hay \(\frac{6}{BD}=\frac{10}{CD}\)
Ta có: BD+CD=BC(D nằm giữa B và C)
hay BD+CD=8
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{6}{BD}=\frac{10}{CD}=\frac{6+10}{BD+CD}=\frac{16}{8}=2\)
\(\Leftrightarrow BD=\frac{6}{2}=3\)
Xét ΔABD vuông tại B có
\(\tan\widehat{ADB}=\frac{AB}{BD}=\frac{6}{3}=2\)