Bài 2: Mặt cầu

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Từ một điểm M nằm ngoài mặt cầu \(S\left(O;r\right)\) ta kẻ hai đường thẳng cắt mặt cầu lần lượt tại A, B và C, D

a) Chứng minh rằng MA.MB=MC.MD

b) Gọi MO = d. Tính MA.MB theo r và d

Minh Thư
3 tháng 4 2017 lúc 12:26

a) Gọi (P) là mặt phẳng chứa hai đường thẳng đã cho. Mặt phẳng (P) cắt mặt cầu S(O;r) theo một đường tròn tâm I, là hình chiếu vuông góc của O lên mặt phẳng (P).

Xét hai tam giác MAD và MCB có góc chung nên hai tam giác đó đồng dạng.

Vì vậy: => MA.MB = MC.MD.

b) Đặt MO = d, ta có Oi vuông góc với (P) và ta có:

MO2= MI2 = OI2 và OA2 = OI2 + IA2

Hạ IH vuông góc AB, ta có H là trung điểm của AB.

Ta có MA = MH - HA; MB = MH + HB = MH + HA.

Nên MA.MB =

MH2 – HA2 = (MH2 + HI2) – (HA2 + IH2)

= MI2 – IA2 = ( MI2 + OI2) – (IA2 + OI2)

= MO2 – OẢ2

= d2 – r2

Vậy MA.MB = d2 – r2



Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Anh lê
Xem chi tiết
giang phan
Xem chi tiết