Bài 2: Mặt cầu

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho mặt cầu tâm O, bán kính r. Gọi \(\left(\alpha\right)\) là mặt phẳng cách tâm O một khoảng h \(\left(0< h< r\right)\) và cắt mặt cầu theo đường tròn (C). Đường thẳng d đi qua một điểm A cố định trên (C) và vuông góc với mặt phẳng \(\left(\alpha\right)\) cắt mặt cầu tại một điểm B. Gọi CD là một đường kính di động của (C)

a) Chứng minh các tổng \(AD^2+BC^2\) và \(AC^2+BD^2\) có giá trị không đổi

b) Với vị trí nào của CD thì diện tích tam giác BCD lớn nhất

c) Tìm tập hợp các điểm H, hình chiếu vuông góc của B trên CD khi CD chuyển động trên đường tròn (C)

Nguyen Thuy Hoa
20 tháng 5 2017 lúc 16:29

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết