Từ 1 điểm S ở ngoài đường tròn (O) kẻ 2 tiếp tuyến SB, SC ( B, C là tiếp điểm ). Vẽ tia Sx nằm giữa SO và SC cắt đường tròn (O) tại E, F ( E nằm giữa S và F) a) Chứng minh: SC2 = SE.SF b) Gọi I là trung điểm dây EF. Chứng minh tứ giác BCIO nội tiếp trong đường tròn. c) Qua B kẻ dây BA // EF. Chứng minh : A, I, C thẳng hàng
a: Xét ΔSCE và ΔSFC có
góc SCE=góc SFC
góc CSE chung
=>ΔSCE đồng dạng với ΔSFC
=>SC^2=SE*SF
b: ΔOEF cân tại O
mà OI là trung tuyến
nên OI vuông góc FE
góc OIS+góc OBS=180 độ
=>OISB nội tiếp