Xét ΔABC có các đường trung tuyến \(AA_1;BB_1\) cắt nhau tại O
nên O là trọng tâm
=>AO=2/3AA1
\(\Leftrightarrow S_{AA_1B}=\dfrac{2}{3}S_{AOB}\)
\(\Leftrightarrow S_{ABC}=3\cdot S_{AOB}=15\left(cm^2\right)\)
Xét ΔABC có các đường trung tuyến \(AA_1;BB_1\) cắt nhau tại O
nên O là trọng tâm
=>AO=2/3AA1
\(\Leftrightarrow S_{AA_1B}=\dfrac{2}{3}S_{AOB}\)
\(\Leftrightarrow S_{ABC}=3\cdot S_{AOB}=15\left(cm^2\right)\)
Cho tam giác ABC vuông tại A, có AB=5cm, BC=13cm. Ba đường trung tuyến AM, BN, CE cắt nhau tại O.
a. Tính AM, BN, CE
b. Tính diện tích tam giác BOC
cho tam giác ABC. kẻ trung tuyến từ AM đến BC và trung tuyến từ BN đến AC cắt nhau O. Cm tam giác ABO = 2/3 tam giác AMB
Bài 12: Cho tam giác ABC cân tại A, vẽ đường trung tuyến AM ( M thuộc BC ). Qua M kẻ đường thẳng song song với AB , cắt AC tại N . Gọi O là giao điểm của AM và BN . Chứng minh O là trọng tam của tam giác ABC.
Cho tam giác ABC vuông tại B và AB=3cm,BC=4 cm.Vẽ BE là đường trung tuyến của tam giác ABC.
A) Tính AC và BE (Biết: Trong một tam giác vuông đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền.)
B)Trên tia đối của tia BC lấy điểm D sao cho AD=AC.Chứng minh AB là đường trung tuyến của tam giác ADC.
C)Gọi G là giao điểm của DE và AB;N là trung điểm của AD.Chứng minh: G là trọng tâm của tam giác ADC.Từ đó suy ra :C, G, N thẳng hàng.
D)Chứng minh: DE=CN
1) Cho tam giác ABC, 3 đường trung tuyến AD, BE và CF cắt nhau tại O. CM: 6 tam giác OAE, OEC, OCD, ODB, OFB và OFA có diện tích bằng nhau
2) Cho tam giác ABCvuoong tại A có AB=5cm, BC=13cm. 3 đường trung tuyến AM, BN, CE cắt nhau tại O.
(a) Tính AM, BN, CE (b) Tính diện tích tam giác BOC
3) Cho tam giác ABC, 3 đường trung tuyến AD, BE, CF. Từ E kẻ đường thẳng song song với AD cắt ED tại I.
(a) CM: IC song song vs BE
(b) CM: Nếu AD vuông góc vs BE thì tam giác ICF là tam giác vuông.
(c) So sánh các cạnh của tam giác ICF vs các trung tuyến của tam giác ABC
Ví dụ 7. Cho tam giác ABC có các đường trung tuyến BD, CE cắt nhau tại G. Biết rằng BD = CE .
a) Tam giác GBC là tam giác gì? Vì sao?
b) Chứng minh ADBC =AECB.
c) Chứng minh tam giác ABC cân.
Chứng minh rằng các trung tuyến của một tam giác phân chia tam giác đó thành 6 tam giác mà diện tích của chúng (đôi một) bằng nhau.
Cho tam giác ABC cân tại A có BM và CN là hai đường trung tuyến cắt nhau tại G
a) Chứng minh AM vuông góc BC
b) Cho AB = AC = 13cm, BC = 10cm, tính AG
c) Lấy I là trung điểm AB, chứng minh C, G, I thẳng hàng
Biết rằng : Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền. Hãy giải bài toán sau:
Cho tam giác vuông ABC có hai cạnh góc vuông AB = 3cm, AC = 4cm. Tính khoảng cách từ đỉnh A tới trọng tâm G của tam giác ABC ?