Trong mặt phẳng Oxy ,cho dường thẳng d1: x - 2y + 3=0 và hai điểm A(1;3) B(-2:4).Điểm M (x;y) ∈ d1 sao cho | \(\overrightarrow{MA}\) +\(\overrightarrow{MB}\)| đạt giá trị nhỏ nhất .
Trong mặt phẳng Oxy , cho (C) : x2 + y2 - 2x - 4y + 1 =0 , \(\Delta:x-y-7=0\) . Tìm tọa độ điểm M thuộc \(\Delta\) sao cho từ M kẻ được 2 tiếp tuyển MA,MB ( A,B là tiếp điểm ) sao cho diện tích tứ giác MAIB nhỏ nhất
Trong mặt phẳng tọa độ Oxy
a. Tìm tọa độ điểm M trên trục hoành sao cho AM= căn 2, biết A(2;0)
b. Cho đường tròn (C): (x+2)^2 + (y-1)^2=9 và điểm A(3;2). Tìm tọa độ điểm M thuộc đường tròn (C) sao cho độ dài đoạn AM nhỏ nhất
cho hai điểm A (3;4) và B (-1;2) ,đường thẳng Δ : x - 2y - 2=0 .Tìm tạo độ điểm M nằm trên Δ sao cho :
a ) MA2 +2MB2 nhỏ nhất
b ) |MA-MB| lớn nhất
trong mp tọa độ Oxy, cho đg thg d: 2x-y+3=0 và 2 điểm A(1;0); B(2;1). tìm điểm M trên d sao cho MA+MB nhỏ nhất
Cho đường thẳng d: 2x-y+2=0 và 2 điểm A(-4;1) và B(3;4). Tìm tọa độ điểm M trên d sao cho \(\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\) nhỏ nhất
trong mặt phẳng tọa độ Oxy cho tam giác ABC cân tại A có phương trình đường thẳng chứa cạnh AB là x+2y-2=0 phương trình đường thẳng chứa cạnh AC là 2x+y+1=0 điểm M(1;2) thuộc đoạn thẳng BC tìm tọa độ điểm D sao cho \(\overrightarrow{DA}.\overrightarrow{DC}\) có giá trị nhỏ nhất
Cho tam giác ABC, M thuộc AC sao cho \(\overrightarrow{MA}=-2\overrightarrow{MC}\), N thuộc BM sao cho \(\overrightarrow{NB}=-3\overrightarrow{NM}\), P thuộc BC sao cho \(\overrightarrow{PB}=k\overrightarrow{PC}\). Tìm k để ba điểm A,N,P thẳng hàng.
1. Cho điểm A\(\left(8;-1\right)\) và đường thẳng d: \(2x-y-7=0\). Viết pt đt d đi qua O sao cho khoảng cách từ A đến đường thẳng d lớn nhất .
2. Cho điẻm M (3;1) .Viết pt đt Δ đi qua M ,cắt tia Ox và tia Oy tương ứng tại A và B ( khác O ) sao cho :
a) \(P=\dfrac{9}{OA^2}+\dfrac{4}{OB^2}\) nhỏ nhất