\(AB\perp BC\Rightarrow AB\perp d\Rightarrow\) B là hình chiếu vuông góc của A lên d
Phương trình đường thẳng d' qua A và vuông góc d có dạng:
\(2\left(x-0\right)+1\left(y-2\right)=0\Leftrightarrow2x+y-2=0\)
B là giao d và d' nên tọa độ: \(\left\{{}\begin{matrix}x-2y+2=0\\2x+y-2=0\end{matrix}\right.\) \(\Rightarrow B\left(\frac{2}{5};\frac{6}{5}\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(\frac{2}{5};-\frac{4}{5}\right)\Rightarrow AB=\frac{2\sqrt{5}}{5}\Rightarrow BC=\frac{\sqrt{5}}{5}\)
Gọi \(C\left(2c-2;c\right)\Rightarrow\overrightarrow{BC}=\left(2c-\frac{12}{5};c-\frac{6}{5}\right)\)
\(\Rightarrow\left(2c-\frac{12}{5}\right)^2+\left(c-\frac{6}{5}\right)^2=\left(\frac{\sqrt{5}}{5}\right)^2\)
\(\Leftrightarrow5c^2-12c+7=0\Rightarrow\left[{}\begin{matrix}c=1\\c=\frac{7}{5}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}C\left(0;1\right)\\C\left(\frac{4}{5};\frac{7}{5}\right)\end{matrix}\right.\)