Cho hình thoi ABCD có góc BAD bằng 500, O là giao điểm của AC và BD, H là hình chiếu của điểm O trên AB. Trên tia đối của BC lấy M, trên tia đối của DC lấy N sao cho HM //AN. Tính số đo góc MON.
Cho hình thoi ABCD có góc BAD bằng 500, O là giao điểm của AC và BD, H là hình chiếu của điểm O trên AB. Trên tia đối của BC lấy M, trên tia đối của DC lấy N sao cho HM //AN. Tính số đo góc MON
5. Cho đường tròn tâm O đường kính MN và A là một điểm trên đường tròn (O) (A khác M và A khác N) . lấy một điểm I trên đoạn thẳng ON ( I khác O và I khác N) . đưa I kẻ đường thẳng(d) vuông góc với Mn. Gọi P, Q lần lượt là giao điểm của AM , AN với đường thẳng (d)
a, gọi K là điểm đối xứng của N qua điểm I . chứng minh tứ giác MPQK nội tiếp đường tròn
b, chứng minh rằng IM.IN=IP.IQ
Giúp mình với mốt là mình đi thi rồi
Cho (O,R) trên (O,R) lấy hai điểm A và H sao cho AH<R. Gọi a là tiếp tuyến tại H của (O) . Trên a lấy hai điểm B và C sao cho H nằm giữa B,C và AB=AC=R Từ H lần lượt vẽ HM vuông góc với OB (M thuộc OB ) và HN vuông góc OC (N thuộc OC )
1) CM rằng MN là trung trực OA
2) Chứng minh OB.OC=2R2
3) Tìm giá trị lớn lớn nhất của diện tích tam giác OMN khi H thay đổi
( Hướng dẫn : Gọi S là điểm thuộc cung nhỏ HI. Kẻ tiếp tuyến tại S của (O) cắt BH, BI lần lượt tại R và T )
(Làm hộ mình mỗi câu d thôi nha, các câu kia để lấy số liệu làm bài)
Cho nửa đường tròn(O;R), đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, kẻ tiếp tuyến Bx với (O). M là điểm bất kì trên Bx(M khác B), AM cắt nửa đường tròn (O) tại N (N khác A). Kẻ OE vuông góc với AN tại E.
a) Chứng minh các điểm E, O, B, Mcùng thuộc đường tròn
b) Tiếp tuyến của nửa đường tròn (O) tại N cắt tia OE tại K và cắt MB tại D. Chứng minh KA là tiếp tuyến của nửa đường tròn (O).
c) Chứng minh KA.DB không đổi khi M di động trên tia Bx
d) Gọi H là giao điểm của AB và DK, kẻ OF vuông góc với AB(F thuộc DK). Chứng minh: BD/DF+DF/HF=1
(Làm hộ mình mỗi câu d thôi nha, các câu kia để lấy số liệu làm bài)
Cho nửa đường tròn(O;R), đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, kẻ tiếp tuyến Bx với (O). M là điểm bất kì trên Bx(M khác B), AM cắt nửa đường tròn (O) tại N (N khác A). Kẻ OE vuông góc với AN tại E.
a) Chứng minh các điểm E, O, B, Mcùng thuộc đường tròn
b) Tiếp tuyến của nửa đường tròn (O) tại N cắt tia OE tại K và cắt MB tại D. Chứng minh KA là tiếp tuyến của nửa đường tròn (O).
c) Chứng minh KA.DB không đổi khi M di động trên tia Bx
d) Gọi H là giao điểm của AB và DK, kẻ OF vuông góc với AB(F thuộc DK). Chứng minh: BD/DF+DF/HF=1
Cho đường tròn (O;R) và dây BC cố định không đi qua tâm. Trên tia đối của tia BC lấy điểm A (A khác B). Từ A kẻ hai tiếp tuyến AM và AN với đường tròn (O) (M và N là các tiếp điểm). Gọi I là trung điểm của BC.1) Chứng minh A; O; M; N; I cùng thuộc một đường tròn và IA là tia phân giác của góc MIN.2) Gọi K là giao điểm của MN và BC. Chứng minh
\(\dfrac{2}{AK}=\dfrac{1}{AB}+\dfrac{1}{AC}\)
3) Đường thẳng qua M và vuông góc với đường thẳng ON cắt (O) tại điểm thứ hai là P. Xác định vị trí của điểm A trên tia đối của tia BC để AMPN là hình bình hành.
Mình cần câu c thôi
Cho nửa đường tròn(O;R), đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, kẻ tiếp tuyến Bx với (O). M là điểm bất kì trên Bx(M khác B), AM cắt nửa đường tròn (O) tại N (N khác A). Kẻ OE vuông góc với AN tại E.
a) Chứng minh các điểm E, O, B, Mcùng thuộc đường tròn
b) Tiếp tuyến của nửa đường tròn (O) tại N cắt tia OE tại K và cắt MB tại D. Chứng minh KA là tiếp tuyến của nửa đường tròn (O).
c) Chứng minh KA.DB không đổi khi M di động trên tia Bx
d) Gọi H là giao điểm của AB và DK, kẻ OF vuông góc với AB(F thuộc DK). Chứng minh: BD/DF+DF/HF=1
trên đường tròn (O;R) lấy 3 điểm A,B,C sao cho AB=BC=R. M,N lần lượt là điểm chính giữa hai cung nhỏ AB và BC .Tính số đo góc MBN