\(=\dfrac{2}{x\left(x-y\right)}-\dfrac{2}{y\left(x-y\right)}=\dfrac{2y-2x}{xy\left(x-y\right)}=\dfrac{-2}{xy}\)
\(=\dfrac{2}{x\left(x-y\right)}-\dfrac{2}{y\left(x-y\right)}=\dfrac{2y-2x}{xy\left(x-y\right)}=\dfrac{-2}{xy}\)
Rút gọn biểu thức:
\(\dfrac{x^2+xy}{x^2+xy+y^2}\) - [\(\dfrac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}\) - 2 + \(\dfrac{y}{y-x}\)] : \(\dfrac{x-y}{x}\) - \(\dfrac{x}{x-y}\)
N=x2/(x+y)(1-y)-y2/(x+y)(1+x)-x2y2/(1+x)(1-y)
rút gọn biểu thức p=x^2/((x+y)(1-x))-y^2/((x+y)(1+x))-x^2y^2/((x+1)(1-y))
Rút gọn phân thức:
1, \(\dfrac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)
2, \(\dfrac{x^4-y^4}{x^3+y^3}\)
3, \(\dfrac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2}\)
4, \(\dfrac{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
5, \(\dfrac{x^3-7x+6}{x^2\left(x-3\right)^2+4x\left(3-x\right)^2+4\left(x-3\right)^2}\)
Cho x + y + z + 0 và x, y, z \(\ne\) 0. Rút gọn :
a/ \(P=\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
b/ \(Q=\dfrac{\left(x^2+y^2-z^2\right)\cdot\left(y^2+z^2-x^2\right)\cdot\left(z^2+x^2-y^2\right)}{16\cdot x\cdot y\cdot z}\)
[x-2]3-x[x+1] [x-1] +6x [x-3]
[x-2] [x2 -2x +4] [x+2] [x2 + 2x + 4 ]
[2x+y] [4x2 -2xy +y2 ] - [2x-y] [4x2 + 2xy + y2 ]
[x+y]3 - [x-y]3 - 2y3
rút gọn
\(\left(x-\dfrac{x^2+y^2}{x+y}\right)\left(\dfrac{1}{y}+\dfrac{2}{x-y}\right)\)
Rút gọn rồi tính giá trị biểu thức
\(\left[\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-4}{x^2+x+xy+y}\right]:\dfrac{x+1}{2x^2+y+2}\)
với x=-1,76 y=\(\dfrac{3}{25}\)
1. Cho biết x , y , z # 0 và \(\dfrac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\) .
Chứng minh rằng : \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
2. Rút gọn : \(\dfrac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\) , biết rằng : x + y + z = 0
3. Cho 3x - y = 3z và 2x + y = 7z . Tính giá trị cua biểu thức :
M = \(\dfrac{x^2-2xy}{x^2+y^2}\) ( x # 0 ; y # 0 )