Rút gọn BT với \(x>0;x\ne8\)
\(P=\dfrac{8-x}{2+\sqrt[3]{x}}:\left(2+\dfrac{\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)+\left(\sqrt[3]{x}+\dfrac{2\sqrt[3]{x}}{\sqrt[3]{x}-2}\right)\left(\dfrac{\sqrt[3]{x^2}-1}{\sqrt[3]{x^2}+2\sqrt[3]{x}}\right)\)
rút gọn biểu thức
P=\(\dfrac{8-x}{2+\sqrt[3]{x}}:\left(2+\dfrac{\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)\)+\(\left(\sqrt[3]{x}+\dfrac{2\sqrt[3]{x}}{\sqrt[3]{x}-2}\right)\).\(\left(\dfrac{\sqrt[3]{x^2}-1}{\sqrt[3]{x^2}+\sqrt[3]{x}}\right)\)
Tính:a)\(\left(\dfrac{1}{2}\sqrt[3]{9}-2\sqrt[3]{3}+3\sqrt[3]{\dfrac{1}{3}}\right)\):\(2\sqrt[3]{\dfrac{1}{3}}\)
b)\(\left(\sqrt[3]{4}+1\right)^3\)-\(\left(\sqrt[3]{4}-1\right)^3\)
c)\(\left(12\sqrt[3]{2}+\sqrt[3]{16}-2\sqrt[3]{2}\right)\)\(\left(5\sqrt[3]{4}-3\sqrt[3]{\dfrac{1}{2}}\right)\)
GIẢI PHƯƠNG TRÌNH
1. \(\sqrt[3]{\left(3x+1\right)^2}+\sqrt[3]{\left(3x-1\right)^2}+\sqrt[3]{9x^2-1}=1\)
2. \(\sqrt[3]{\dfrac{1}{2}+x}+\sqrt[3]{\dfrac{1}{2}-x}=1\)
CÁC BẠN GIÚP MÌNH VỚI!
Rút gọn biểu thức:
\(B=\left(\dfrac{b}{b+8}-\dfrac{4b}{\left(\sqrt[3]{b}+2\right)^3}\right)\left(\dfrac{1+2\sqrt[3]{\dfrac{1}{b}}}{1-2\sqrt[3]{\dfrac{1}{b}}}\right)^2-\dfrac{24}{b+8}\)
Tính:
a) \(\sqrt[3]{\left(\sqrt{2}+1\right)\left(3+2\sqrt{2}\right)}\)
b) \(\sqrt[3]{\left(4-2\sqrt{3}\right)\left(\sqrt{3}-1\right)}\)
c) \(\left(\sqrt[3]{4}+1\right)^3-\left(\sqrt[3]{4}-1\right)^3\)
d) \(\left(\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}\right)\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\)
e) \(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
Mọi người giúp em với ạ!!!!!!!!!!!
7.cho biểu thức:
\(P=\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\) a)rút gon P
b)tính giá trị của P khi x =\(\dfrac{1}{2}\left(3+2\sqrt{2}\right)\)
A =\(\dfrac{x\sqrt[]{x}-3}{x-2\sqrt[]{x}-3}-\dfrac{2\left(\sqrt[]{x}-3\right)}{\sqrt[]{x}+1}+\dfrac{\sqrt[]{x}+3}{3-\sqrt[]{x}}\)
a. rút gọn A
b. Tính A với x = \(14-6\sqrt[]{5}\)
c. tìm min A
A=\(\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn A
b) Tính A với x=14-6\(\sqrt{5}\)
c) Tìm Min A