Đặt \(A=\frac{1}{2\cdot15}+\frac{3}{2\cdot11}+\frac{4}{1\cdot11}+\frac{5}{1\cdot2}\)
\(\Leftrightarrow\frac{A}{7}=\frac{1}{14\cdot15}+\frac{3}{11\cdot14}+\frac{4}{7\cdot11}+\frac{5}{7\cdot2}\)
\(\Leftrightarrow\frac{A}{7}=\frac{1}{14}-\frac{1}{15}+\frac{1}{11}-\frac{1}{14}+\frac{1}{7}-\frac{1}{11}+\frac{1}{2}-\frac{1}{7}\)
\(\Leftrightarrow\frac{A}{7}=-\frac{1}{15}+\frac{1}{2}=\frac{1}{2}-\frac{1}{15}=\frac{15-2}{30}=\frac{13}{70}\)
hay \(A=\frac{13\cdot7}{70}=\frac{91}{70}=\frac{13}{10}\)