Tính: B= \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
Giúp mk vs trên violympic toàn bài chưa học thui
Tính \(\frac{A}{B}\) biết :
a) \(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{19\cdot20}\)
b) \(B=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}\)
bài 1: tính A:=\(\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}-\frac{6}{7}-\frac{5}{6}+\frac{4}{5}-\frac{3}{4}+\frac{2}{3}-\frac{2}{3}-\frac{1}{2}\)
Bài 2: Cho B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+.....+\frac{1}{49}-\frac{1}{50}\)
Chứng minh rằng: \(\frac{7}{12}< A< \frac{5}{6}\)
Tính \(\text{A}\times\text{B}\), biết :
\(\text{A}=\frac{\frac{3}{10}+\frac{1}{2}-\frac{1}{6}}{\frac{1}{9}-\frac{1}{5}-\frac{1}{3}}\)
\(\text{B}=\frac{\left(3\cdot4\cdot2^{16}\right)^{^2}}{11\cdot2^{13}\cdot4^{11}-16^9}\)
Bài 1 :Thực hiện phép tính :
a) M =(\(\frac{-6}{13}+\frac{15}{26}-\frac{47}{39}-\frac{1}{78}\)) : (\(99\frac{17}{65}-100\frac{5}{52}+\frac{1}{130}\))
b) N = \(\frac{(\frac{3}{5}-0,435+\frac{1}{200}):\left(-0,04\right)}{30,75+\frac{1}{12}+3\frac{1}{6}}\)
c) P = (\(\frac{-5}{6}:\frac{-10}{11}\))+\(\frac{\frac{1}{4}+\frac{5}{8}-\frac{7}{13}}{\frac{-2}{12}-\frac{10}{24}+\frac{14}{39}}\)
Bài 2 : Thực hiện phép tính :V
a) P =\(\frac{\frac{1}{5}-\frac{1}{9}+\frac{1}{13}}{\frac{9}{5}-1+\frac{9}{13}}+\frac{\frac{10}{7}-\frac{10}{11}-\frac{10}{17}}{\frac{12}{7}-\frac{12}{11}-\frac{12}{17}}\)
b) Q = \(\frac{\frac{1}{14}-\frac{1}{30}-\frac{1}{46}}{\frac{2}{35}-\frac{2}{75}-\frac{2}{115}}:\frac{\frac{3}{8}-\frac{15}{17}+\frac{30}{31}}{\frac{1}{6}-\frac{20}{51}+\frac{40}{93}}\)
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+................+\frac{1}{99.100}\). Chứng minh rằng: \(\frac{7}{12}< A< \frac{5}{6}\)
Cho biểu thức A= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...................+\frac{1}{99.100}\). Chứng minh \(\frac{7}{12}< A< \frac{5}{6}\)
\(a.A=[\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}+\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}]+\frac{1890}{2005}+115\)
b.B=\(\left[\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\cdot\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(42-5\frac{1}{3}\right)}\cdot\left(-1\frac{19}{93}\right)\right]\cdot\frac{31}{50}\)
Chứng minh rằng :
\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\)