Ta có \(y'=e^{\sqrt[3]{x^2+1}-x}\left(\sqrt[3]{x^2+1}-x\right)+3^{3x-1}\left(3x-1\right)'\ln3\)
\(=e^{\sqrt[3]{x^2+1}-x}\left(\frac{2x}{3\sqrt[3]{\left(x^2+1\right)^2}}-1\right)+3^{3x}\ln3\)
Ta có \(y'=e^{\sqrt[3]{x^2+1}-x}\left(\sqrt[3]{x^2+1}-x\right)+3^{3x-1}\left(3x-1\right)'\ln3\)
\(=e^{\sqrt[3]{x^2+1}-x}\left(\frac{2x}{3\sqrt[3]{\left(x^2+1\right)^2}}-1\right)+3^{3x}\ln3\)
Tính đạo hàm của các hàm số sau:
a) \(y = (2x^2 - x + 1)^{\frac{1}{3}}\)
b) \(y = (3x+1)^{\pi}\)
c) \(y = \sqrt[3]{\dfrac{1}{x-1}}\)
d) \(y =\log_{3} \left(\dfrac{x+1}{x-1}\right)\)
e) \(y = 3^{x^{2}}\)
f) \(y = \left(\dfrac{1}{2}\right)^{x^2-1}\)
h) \(y = (x+1) . e^{cosx}\)
g) \(y = \ln (x^2+x+1)\)
l) \(y = \dfrac{\ln x}{x+1}\)
Tính đạo hàm hàm số :
\(y=\log_3\sqrt{\frac{x^2-2x+3}{x^2+2x+3}}\)
Tính đạo hàm của các hàm số sau:
g) \(y = \ln (x^2+x+1)\)
l) \(y = \dfrac{\ln x}{x+1}\)
Cho hàm số y=f(x) có đạo hàm liên tục trên R và thỏa mãn 2f(5-3x)+3f(x+1)=x^2+4x+5. Viết phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ bằng 2
Tìm tập xác định và tính đạo hàm của các hàm số :
a) \(y=\left(x^3-8\right)^{\frac{\pi}{3}}\)
b) \(y=\left(x^2+x-6\right)^{\frac{-1}{3}}\)
1. Tìm tập xác định của các hàm số sau:
a) \(y = 3(x-1)^{-3}\)
b) \(y = (2 - x^2)^{\frac{2}{5}}\)
c) \(y = (x^2 + x - 6)^{\frac{-1}{3}}\)
d) \(y = \left(\dfrac{1}{x^2-1}\right)^3\)
e) \(y = \log_{3} (x^2-2)\)
f) \(y = \log_{\frac{1}{2}}\sqrt{x-1}\)
g) \(y = \log_{\pi} (x^2+x-6)\)
Xét tính đơn điệu của hàm số :
\(y=3^x\left(\sqrt{x^2+1}-x\right)\)
Đạo hàm y= x+1/x3
Tính đạo hàm hàm số :
\(y=\frac{4^x-1}{6^x}\)