Đề dài quá nên mình làm từ từ.
a) Từ giả thiết ta có \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x-y+z-t}{15-7+3-1}=\frac{10}{10}=1\)
Từ đó suy ra x =15; y =7;z=3;t=1
Đúng ko ta:3
b) \(\left\{{}\begin{matrix}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{matrix}\right.\Rightarrow\frac{x}{20}=\frac{y}{24}=\frac{z}{21}\). Trở về dạng câu a:)
c)\(\left\{{}\begin{matrix}2x=3y\\5y=7z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{3}=\frac{y}{2}\\\frac{y}{7}=\frac{z}{5}\end{matrix}\right.\). trở về dạng câu b:D
d) Đặt \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=k\Rightarrow x=2k+1;y=4k-3;z=6k+5\)
Từ đây thay vào giả thiết 5x - 3x - 4y = 50 sẽ tìm được..:D
a) Ta có \(x:y:z:t=15:7:3:1.\)
=> \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\) và \(x-y+z-t=10.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x-y+z-t}{15-7+3-1}=\frac{10}{10}=1.\)
\(\left\{{}\begin{matrix}\frac{x}{15}=1=>x=1.15=15\\\frac{y}{7}=1=>y=1.7=7\\\frac{z}{3}=1=>z=1.3=3\\\frac{t}{1}=1=>t=1.1=1\end{matrix}\right.\)
Vậy \(\left(x;y;z;t\right)=\left(15;7;3;1\right).\)
Chúc bạn học tốt!