Rút gọn
a) M= (x + y + z)2 + (y + z)2 - 2(y + z) . (x + y +z)
b) N= (x - 1)3 + (x + 1)3
Rút gọn biểu thức:
a,A=(x - y + z)2 + ( z - y )2 + 2(x - y + z)(y - z)
b,B=(5x -1) + 2(1-5x)(4 + 5x) + ( 5x + 4)2
c,C=(x - y )3 + ( y+ x)3 + ( y - x)3 - 3xy( x + y)
3. A) Cho x, y, z khác 0 thỏa mãn: (x-y-z)2= x2+y2+z2
Chứng minh rằng: \(\frac{1}{x^3}-\frac{1}{y^3}-\frac{1}{z^3}\) = \(\frac{3}{xyz}\)
b) Cho x,y,z khác 0 thỏa mãn: (4x-3y+2z)2= 16x2+9y2+4z2.
Chứng minh rằng: \(\frac{1}{64x^3}-\frac{1}{27y^3}+\frac{1}{8z^3}\)=\(-\frac{1}{8xyz}\)
4. a)CMR: (A+B+C)3 - A3-B3-C3 = 3(A+B)(B+C)(C+A)
b) Cho P = (x+y+z)3-x3-y3-z3.
CMR:
-Nếu P =0 Thì(x11+y11)(y+z7)(z2019+x2019)=0
-Nếu x,y, z là các số nguyên cùng tính chẵn lẻ thì P chia hết cho 8, cho 24
1/2.(6x-2y).(3x+y)
(2/3z-2/5x).(1/3z+1/5x).1/2
(5y-3x).1/4.(12x+20y)
(3/4y-1/2x).(x+3/2y).2
(a+b+c).(a+b-c)
(x-y+z).(x+y-z)
mng giúp mình vs ạ
1) cho các số a,b,c dương thỏa mãn \(a^3+b^3+c^3=3abc\). CMRa=b=c
2) cho x,y,z thỏa mãn xyz=1 và \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\). Tính A=\(x^{2018}+2019^y-z^x\)
3) Cho \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}.CMR\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)
Chứng minh đẳng thức
a, (x-y-z)^2=x^2 + y^2+z^2-2xy+2yz-2zx
b, ( x+y-z)^2=x^2+y^2+z^2+2xy-2yz-2zx
c, ( x-y)(x^3+x^2y+xy^2+y^3)=5x(x+1)
d, ( x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)=x^5+y^5
Giúp mk vs ạ mk đang cần
BT2 :Cho x,y,z là các số khác 0. Cmr
với \(x+y+z=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) thì \(\dfrac{x^6+y^6+z^6}{x^3+y^3+z^3}=xyz\)
Cho ba số thực x, y, z thỏa mãn x + y + z = 6 và (x - 1)3 + (y - 2)3 + (z - 3)3 = 0
Tính giá trị biểu thức T = (x - 1)2017 + (y - 2)2017 + (z - 3)2017
Bài 1: Chứng minh rằng giá trị các biểu thức sau không phụ thuộc vào biến x.
a) x(2x + 1) - x2(x + 2) + (x3 - x + 3)
b) x(3x2 - x + 5) - (2x3 + 3x - 16) - x(x2 - x + 2)
Bài 2: Chứng minh rằng các biểu thức sau đây bằng 0
a) x(y - z) + y(z - x) + z(x - y)
b) x(y + z -yz) - y(z + x - zx) + z(y - x)
Nhanh giúp mình với, đang cần gấp!!