Tìm x :
\(\frac{x-2}{5}=\frac{2x-3}{4}\)
\(\frac{3}{2\left(x-1\right)}=\frac{4}{5\left(x-2\right)}\)
\(\frac{x-5}{x-6}=\frac{x-1}{x+2}\)
xét tính đồng biến nghịch biến
1 y= (x+1).(\(\sqrt{X+4}\)
2. y=\(\frac{\sqrt{x}}{x+1}\)
giải phương trình:
1)\(\sqrt{x+2}-\sqrt{3-x}=x^2-6x+9\)
2)\(\sqrt{x}-\sqrt{x-1}=\sqrt{x+8}-\sqrt{x+3}\)
3)\((\sqrt{1+x}-1)\left(\sqrt{1-x}+1\right)=2x\)
4)\(\sqrt[3]{x+1}+\sqrt[3]{x-1}=4x+1\)
5)\(\left(x-3\right)\left(x+1\right)-4\left(x-3\right)\left(\sqrt{\frac{x+1}{x-3}}\right)=-3\)
6)\(\sqrt{x^2-2x}+\sqrt{x^2-7x}=\sqrt{x^2-23x}\)
mọi người làm giúp mình với mai nộp nài rồi
Câu 1: Cho hàm số \(f\left(x\right)\) liên tục trên \(R\) và thoả mãn \(\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\frac{f\left(x\right)}{f’\left(x\right)}dx=\int\limits^1_0\frac{\left(f\left(x\right)\right)^2}{xf\left(x\right)}dx=6\int\limits^{\frac{3}{2}}_{\frac{1}{2}}\left(f\left(x\right)\right)^2-f’\left(x\right)dx\)
Khi này tính \(f\left(cos\left(f\left(\pi\right)\right)\right)+f‘\left(x\right)\) bằng:
a) 0
b) 1
c) 2
d) -1
Câu 2: Cho cấp số cộng có \(u_1=2\) và \(u_7=23\) .
a) Xác định công thức tổng quát của cấp số cộng trên
b) Tính \(S=u_1+\left(u_2+u_4+u_6+...+u_{20}\right)\)
c) Cho \(u_5+u_6+...+u_{12}=u_{24}+u_{26}+...+u_{40}-m\)Tìm giá trị \(m\) theo các số hạng của cấp số cộng trên.
Câu 3: Một số điện thoại của công ty A có dạng \(1900abcxyz\). Hỏi xác suất là bao nhiêu để thoả mãn các trường hợp sau:
TH1: số \(a,b,c\) lập thành một cấp số cộng với công sai là 4 và chia hết cho 3 và thoả mãn tổng ba số \(x,y,z\) lớn hơn tổng \(a,b,c\) 2 đơn vị và chia hết 2.
TH2: Các chữ số thoả mãn \(x+a=y+b=z+c\)
TH3: Các chữ số thoả mãn \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) và đôi một khác nhau
TH4: Các chữ số thoả mản \(x.y.z=a.b.c\) và đôi một khác nhau
1.cho x+y+z=xyz và xy+yz+zx≠3
cmr: x(y^2+z^2)+y(x^2+z^2)+z(x^2+y^2)/xy+yz+zx=xyz
2.cmr nếu c^2+2(ab-ac-bc)=0và b≠c,a+b≠c thì \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
3. cho a,b,c thỏa mãn abc≠0 và ab+bc+ca=0
tính :P=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Tìm hệ số của số hạng không chứa x trong khai triển (\(\frac{x}{2}+\frac{4}{x}\))18 với x≠0
Cho log3a=5 và log3b=\(\frac{2}{3}\). Tính giá trị của biểu thức y=2 log 6[log5(5a)]+\(log_{\frac{1}{9}}b^3\)
Bài 1 : tìm x biết :
a) (x-1)\(^2\) + (2-x) ( x+3) = 17
b) (x+2)(x\(^2\) -2x+4) - x (x\(^2\) - 2)=15
c) (x-3)(x+3)-9(\(\frac{1}{9}\)x+1) = 15
d) x(x+5) - (x+2) (x-2)=3
Bài 2 : Tìm giá trị lớn nhất của biểu thức
a) D= -x\(^2\) +6x - 11
b) F= 4x-x\(^2\) +1
Bài 3 : cho a+b=8 và ab=15 . Hãy tính giá trị biểu thức mà không tính a,b
a) C = a\(^4\) + b\(^4\)
Giúp mình với ToT
Bài 1: Tìm điều kiện của x để có biểu thức sau có ý nghĩa:
a) \(\sqrt{2x}\) b) \(\sqrt{x-1}\) c) \(\sqrt{\frac{1}{x+1}}\) d) \(\sqrt{\left(x+1\right)\left(x-1\right)}\)
Bài 2: rút gọn các biểu thức:
a) \(2\sqrt{2}+\sqrt{18}-\sqrt{32}\)
b) \(2\sqrt{5}+\sqrt{\left(1-\sqrt{5}\right)^2}\)
c) \(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}-2\sqrt{3}\)
Bài 3: xác định hàm số bậc nhất y=ax+b
a) Biết đồ thị của hàm số song song với đường tahwngr y=2x và đi qua điểm A(1;4)
b) Vẽ đồ thị hàm số ứng với a, b vừa tìm được
Bài 4: Cho tam giác ABC vuông tại A. Biết BC=10cm, góc C=30độ. Gải tam giác vuông ABC
Bài 5: Cho tam giác ABC vuông tại A, đường cao AH. biết AB=3, AC=4. (phải vẽ hình)
a) Tính AH, BH?
b) chứng minh CB là tiếp tuyến của đường tròn (A, AH)
c) kẻ tiếp tuyến BI và CK với đường tròn (A,AH) (I,K là điểm). Chứng minh: BC=BI+CK và ba điểm I, A, K thẳng hàng