\(2x=3y=5z=>\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\) và x-y+z=-33
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-y+z}{\frac{1}{2}-\frac{1}{3}+\frac{1}{5}}=\frac{-33}{\frac{11}{30}}=-90\)
Ta có: \(\frac{x}{\frac{1}{2}}=-90=>x=\frac{1}{2}.\left(-90\right)=-45\)
\(\frac{y}{\frac{1}{3}}=-90=>y=\frac{1}{3}.\left(-90\right)=-30\)
\(\frac{z}{\frac{1}{5}}=-90=>z=-90.\frac{1}{5}=-18\)
Vậy x=-45, y=-30, z= -18