Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Nguyễn Hoài Thư

Tìm các số x, y, z biết :

a) x : y : z=3 : 5 : (-2) và 5x - y + 3z = -16

b) 2x = 3y, 5y = 7z và 3x - 7y + 5z = 30

c) x : y : z = 4 : 5 : 6 và \(x^{2}-2y^{2}+z^{2}\)=18

Các bạn giúp mình với, giải và cách làm dễ hiểu, chi tiết giùm mình nhé ! Thanks !

Trần Ngọc Định
8 tháng 11 2016 lúc 22:22

a) Theo bài ra , ta có : x : y : z = 3 : 5 : ( -2 )

=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\) => \(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\) và 5x - y + 3z = -16

Áp dụng t/c của dãy tỉ số = nhau , ta có :

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{-16}{-4}=4\)

\(\frac{x}{3}=4\Rightarrow x=4.3=12\\ \frac{y}{5}=4\Rightarrow y=4.5=20\\ \frac{z}{-2}=4\Rightarrow z=-2.4=-8\)

Vậy x = 12 ; y = 20 ; z = -8

 

_ Yuki _ Dễ thương _
8 tháng 11 2016 lúc 22:44

a) Ta có : x : y : z = 3 : 5 : (-2) \(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+-6}=-\frac{16}{4}=-4\)

\(\Rightarrow\begin{cases}\frac{5x}{15}=4\\\frac{y}{5}=4\\\frac{3z}{-6}=4\end{cases}\Rightarrow\begin{cases}5x=4.15\\y=4.5\\3z=4.\left(-6\right)\end{cases}\Rightarrow\begin{cases}5x=60\\y=20\\3z=-24\end{cases}\Rightarrow\begin{cases}x=12\\y=20\\z=-8\end{cases}\)

b) 2x = 3y \(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\) (1)

5y = 7z \(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5x}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow\begin{cases}\frac{3x}{63}=2\\\frac{7y}{98}=2\\\frac{5z}{50}=2\end{cases}\Rightarrow\begin{cases}3x=2.63\\7y=2.98\\5z=2.50\end{cases}\Rightarrow\begin{cases}3x=126\\7y=196\\5z=100\end{cases}\Rightarrow\begin{cases}x=42\\y=28\\z=20\end{cases}\)

c) x : y : z = 4 : 5 : 6 \(\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{z^2}{36}\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

\(\Rightarrow\begin{cases}x^2=9.16\\2y^2=9.50\\z^2=9.36\end{cases}\Rightarrow\begin{cases}x^2=144\\y^2=450\div2=225\\z^2=324\end{cases}\Rightarrow\begin{cases}x=\pm12\\y=\pm15\\z=\pm18\end{cases}\)

Vậy x = 12 ; y = 15 ; z = 18

hoặc x = -12 ; y = -15 ; z = -18

Trần Ngọc Định
8 tháng 11 2016 lúc 22:33

b) Theo bài ra , ta có :

2x = 3y => \(\frac{x}{3}=\frac{y}{2}=\frac{x}{21}=\frac{y}{14}\) (1)

5y = 7z => \(\frac{y}{7}=\frac{z}{5}=\frac{y}{14}=\frac{z}{10}\) (2)

Tứ (1) , (2) => \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\) => \(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\) và 3x - 7y + 5z = 30

Áp dụng t/c của dãy ti số = nhau , ta có :

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

\(\frac{x}{21}=2\Rightarrow x=2.21=42\\ \frac{y}{14}=2\Rightarrow y=2.14=28\\ \frac{z}{10}=2\Rightarrow z=2.10=20\\\)

Vậy x = 42 ; y = 28 ; z = 20

 

Trần Ngọc Định
8 tháng 11 2016 lúc 22:43

Theo bài ra , ta có :

x : y : z = 4 : 5 : 6 => \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\) => \(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\) và x2 - 2y2 + z2 = 18

Áp dụng t/c của dãy tỉ số = nhau, ta có :

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

\(\frac{x}{4}=9\Rightarrow x=4.9=36\\ \frac{y}{5}=9\Rightarrow y=5.9=45\\ \frac{z}{6}=9\Rightarrow z=6.9=54\\\)

vayayj x = 36 , y = 45 , z = 54


Các câu hỏi tương tự
Vân Anh Nguyễn
Xem chi tiết
Thu Huyen Vu Thi
Xem chi tiết
Trần Nguyễn Hoài Thư
Xem chi tiết
Trần Nguyễn Hoài Thư
Xem chi tiết
Alayna
Xem chi tiết
deptraiphaithe
Xem chi tiết
Trần Nguyễn Hoài Thư
Xem chi tiết
Trần Nguyễn Hoài Thư
Xem chi tiết
Lê Nhi
Xem chi tiết