Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nam Lee

Tìm x và y biết :

\(\dfrac{y^2-x^2}{3}=\dfrac{y^2+x^2}{5}\\ \)

Và x10.y10 = 1024

Akai Haruma
18 tháng 7 2018 lúc 0:16

Lời giải:

Ta có: \(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}\Rightarrow 5(y^2-x^2)=3(y^2+x^2)\)

\(\Rightarrow 2y^2=8x^2\Rightarrow y^2=4x^2\)

\(\Rightarrow y^{10}=4^5x^{10}=(2x)^{10}\)

Do đó:

\(x^{10}y^{10}=x^{10}.(2x)^{10}=1024\)

\(\Leftrightarrow (2x^2)^{10}=1024=2^{10}=(-2)^{10}\)

\(\Rightarrow \left[\begin{matrix} 2x^2=2\\ 2x^2=-2(\text{vô lý})\end{matrix}\right.\)

\(\Rightarrow x^2=1\Rightarrow x=\pm 1\)

\(y^2=4x^2=4\Rightarrow y=\pm 2\)

Vậy \((x,y)=(1,-2); (1,2); (-1,2); (-1,-2)\)


Các câu hỏi tương tự
Nam Lee
Xem chi tiết
Nam Lee
Xem chi tiết
Nam Lee
Xem chi tiết
Lê Bảo Minh
Xem chi tiết
Hoàng Mai Trang
Xem chi tiết
đức hà
Xem chi tiết
Nam Lee
Xem chi tiết
Vũ Vân Anh
Xem chi tiết
Hạ Quỳnh
Xem chi tiết