Lời giải:
Ta có: \(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}\Rightarrow 5(y^2-x^2)=3(y^2+x^2)\)
\(\Rightarrow 2y^2=8x^2\Rightarrow y^2=4x^2\)
\(\Rightarrow y^{10}=4^5x^{10}=(2x)^{10}\)
Do đó:
\(x^{10}y^{10}=x^{10}.(2x)^{10}=1024\)
\(\Leftrightarrow (2x^2)^{10}=1024=2^{10}=(-2)^{10}\)
\(\Rightarrow \left[\begin{matrix} 2x^2=2\\ 2x^2=-2(\text{vô lý})\end{matrix}\right.\)
\(\Rightarrow x^2=1\Rightarrow x=\pm 1\)
\(y^2=4x^2=4\Rightarrow y=\pm 2\)
Vậy \((x,y)=(1,-2); (1,2); (-1,2); (-1,-2)\)