a)
\(3x^2(x-5)+12(5-x)=0\)
\(\Leftrightarrow 3x^2(x-5)-12(x-5)=0\)
\(\Leftrightarrow (x-5)(3x^2-12)=0\)
\(\Leftrightarrow 3(x-5)(x^2-4)=0\)
\(\Leftrightarrow 3(x-5)(x-2)(x+2)=0\)
\(\Rightarrow \left[\begin{matrix} x-5=0\\ x-2=0\\ x+2=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=5\\ x=2\\ x=-2\end{matrix}\right.\)
b)
\((x-2)^2-(3x-1)^2=0\)
\(\Leftrightarrow [(x-2)-(3x-1)][(x-2)+(3x-1)]=0\)
\(\Leftrightarrow (-2x-1)(4x-3)=0\Rightarrow \left[\begin{matrix} -2x-1=0\\ 4x-3=0\end{matrix}\right. \)
\(\Rightarrow \left[\begin{matrix} x=\frac{-1}{2}\\ x=\frac{3}{4}\end{matrix}\right.\)
c)
\(\frac{(x+1)^2}{3}-\frac{(x-2)^2}{2}=\frac{2x+1}{2}-\frac{(x-3)^2}{6}\)
\(\Leftrightarrow \frac{2(x+1)^2}{6}-\frac{3(x-2)^2}{6}=\frac{3(2x+1)}{6}-\frac{(x-3)^2}{6}\)
\(\Leftrightarrow 2(x+1)^2-3(x-2)^2=3(2x+1)-(x-3)^2\)
\(\Leftrightarrow 2(x^2+2x+1)-3(x^2-4x+4)=6x+3-(x^2-6x+9)\)
\(\Leftrightarrow -x^2+16x-10=-x^2+12x-6\)
\(\Leftrightarrow 4x=4\Rightarrow x=1\)