Xét dấu
f(x) =\(\frac{4x+6}{\left(x^2-3\right).\left(2x^5-5x+2\right)}\)
cho hệ pt \(\left\{{}\begin{matrix}\left(2m-3\right)x-my=3m-2\\5x-\left(2m+3\right)y=5\end{matrix}\right.\) có bao nhiêu giá trị m để hệ đã cho có nghiệm duy nhất (x;y) thỏa mãn điều kiện 2x+3y=-27
Ai giải giúp mình mấy bài này với :'( Thanks nhiều ạ :* <3
Bài 1: Cho 2 tập hợp A=(m;m+2) và B=(-3;5). Tìm m để \(A\cup B\) là 1 khoảng, hãy xác định các khoảng đó
Bài 2: Cho biểu thức \(f\left(x\right)=\dfrac{x+m}{2m+1-x}.\) Xác định m sao cho f(x) có nghĩa với \(\forall x\in\left(-1;0\right)\)
Bài 3: Cho biểu thức \(f\left(x\right)=\sqrt{2x-m}+\sqrt{x-m-2}.\) Xác định m sao cho f(x) có nghĩa với \(\forall x\in\left(1;+\infty\right)\)
Bài 4: Cho biểu thức \(f\left(x\right)=\sqrt{x-2m}+\sqrt{3m-x}.\) Xác định m sao cho f(x) có nghĩa với \(\forall x\in\left[\dfrac{3}{2};2\right]\)
Hơi dài chút xíu :p mong mọi người giúp mình nhiệt tình nhé :* Thanks các bạn lần nữa <3
Viết phần bù trong R của các tập hợp:
A= \(\left\{x\in R|-2\le x< 10\right\}\)
B= \(\left\{x\in R|\left|x\right|>2\right\}\)
C= \(\left\{x\in R|-4< x+2\le5\right\}\)
Cho A = {x∈R| \(\frac{2}{\left|x-3\right|}\)≥1} và B = [1;6] . Tìm tất cả giá trị của tham số m để B⊂A
tìm điều kiện xác định của :
a,\(\dfrac{1}{\left|x-3\right|+\left|x^2-4\right|}\)
b,\(\dfrac{1}{\left|x-2\right|+\left|4-x\right|-2}\)
help!!! NHỜ MN GIẢI CHI TIẾT GIÙM
Thu gọn các hệ điều kiện sau:
a/ \(\left\{{}\begin{matrix}x\in(-1;3]\\x\in\left(-\infty;2\right)\cup\left(4;+\infty\right)\end{matrix}\right.\)
b/\(\left\{{}\begin{matrix}8\le x\le30\\\left[{}\begin{matrix}x< 10\\x\ge25\end{matrix}\right.\end{matrix}\right.\)
c/\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x< -2\\x>4\end{matrix}\right.\\\left[{}\begin{matrix}x< -5\\x\ge7\end{matrix}\right.\end{matrix}\right.\)
Thu gọn các hệ điều kiện sau:
a/\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x< -2\\x>4\end{matrix}\right.\\\left[{}\begin{matrix}x< -5\\x\ge7\end{matrix}\right.\end{matrix}\right.\)
b/\(\left\{{}\begin{matrix}x\in(-1;3]\cup(5;10]\\x\in(-\infty;2)\cup\left(4;+\infty\right)\end{matrix}\right.\)
Cho a,b,c>0 thỏa mãn \(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\ge\left(abc\right)^2\)
Chứng minh rằng \(\frac{\left(ab\right)^2}{\left(a^2+b^2\right)c^3}+\frac{\left(bc\right)^2}{\left(b^2+c^2\right)a^3}+\frac{\left(ac\right)^2}{\left(a^2+c^2\right)b^3}\ge\frac{\sqrt{3}}{2}\)