$m$ nằm ở chỗ nào thế bạn?
$m$ nằm ở chỗ nào thế bạn?
1,
cho a,b,c,d là các số thực khác 0. biết c và d là 2 nghiệm của pt x2+ax+b=0 và a,b là 2 nghiệm của pt x2+cx+d=0. tính giá trị của biểu thức S=a+b+c+d
2,
có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[-5;5\right]\) để pt \(\left|mx+2x-1\right|=\left|x-1\right|\) có đúng 2 nghiệm phân biệt
3,
có bao nhiêu giá trị nguyên của tham số m để pt \(\left(\frac{x^2}{x-1}\right)^2+\frac{2x^2}{x-1}+m=0\) có đúng 4 nghiệm
cho tập hợp A={ x thuoc R| 2x+m>=0}, B={x thuoc R|x-2m>0} tính tổng S tất cả các số nguyên của tham số m để {1} tập con A giao B
Cho hai tập hợp A=[m+1;m2 +2] và B=[1;6]
. Tìm tất cả các giá trị của m để B⊂A
Cho A ={x∈R| \(\frac{2}{\left|x-3\right|}\)≥ 1} B=(m;m+2] . Tìm m để B⊂A
Tìm tất cả hàm số liên tục f : \(R-R\) thỏa mãn điều kiện
\(f\left(xy\right)=f\left(\frac{x^2+y^2}{2}\right)+\left(x-y\right)^2\)
Cho hàm số f ( x ) = ax^2 + bx + c . Tìm tất cả các giá trị thực của tham số m để phương trình f ( x ) + m - 2018 = 0 có duy nhất 1 nghiệm
Câu 1 : Cho biểu thức \(P=\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\dfrac{1}{\sqrt{x}+1}\right)\)
a ) Rút gọn P
b ) Tìm các giá trị nguyên của x để P < 0
c ) Với giá trị nào của x thì biểu thức \(\dfrac{1}{P}\) đạt GTNN .
Câu 2 :
Giải phương trình sau : \(\sqrt[3]{1+\sqrt{x}}+\sqrt[3]{1-\sqrt{x}}=2\)
Câu 3 :
a ) Cho \(x\ge1,y\ge1\) . Chứng minh : \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)
b ) Cho hai số tự nhiên m và n thỏa mãng \(\dfrac{m+1}{n}+\dfrac{n+1}{m}\) là số nguyên . Chứng minh rằng :
Ước chung lớn nhất của m và n ko lớn hơn \(\sqrt{m+n}\)Akai Haruma
Cho A=[ m-2; m+4], B=( -2;3). Tìm tất cả các giá trị của tham số m sao cho A ∩ B có đúng 3 phần tử là số nguyên
Tìm A \(\cup\) B, A \(\cap\) B, A \ B, B \ A, CRA, CRB và biểu diễn chúng trên trục số:
a) A= {x ϵ R | x<0 hay x \(\ge\) 2}, B= {x ϵ R | -4 \(\le\) x \(\le\) 3}
b) A= {x ϵ R | 2 < |x| < 3}, B= {x ϵ R | |x| \(\ge\) 4}
c) A= {x ϵ R | \(\frac{1}{\left|x-2\right|}>2\)}, B= {x ϵ R | |x-1| <1}