Phương trình hoành độ giao điểm là:
\(x^2+mx+\left(m+1\right)^2=-x^2-\left(m+2\right)x-2\left(m+1\right)\)
=>\(x^2+mx+\left(m+1\right)^2+x^2+\left(m+2\right)x+2m+2=0\)
=>\(2x^2+\left(2m+2\right)x+\left(m^2+4m+3\right)=0\)
\(\Delta=\left(2m+2\right)^2-4\cdot2\cdot\left(m^2+4m+3\right)\)
\(=4m^2+16m+16-8m^2-32m-24\)
\(=-4m^2-16m-8=-4\left(m^2+4m+2\right)\)
\(=-4\left(m^2+4m+4-2\right)\)
\(=-4\left[\left(m+2\right)^2-2\right]\)
Để (P1) cắt (P2) tại hai điểm thì \(\Delta>=0\)
=>\(\left(m+2\right)^2-2< =0\)
=>\(\left(m+2\right)^2< =2\)
=>\(-\sqrt{2}< =m+2< =\sqrt{2}\)
=>\(-\sqrt{2}-2< =m< =\sqrt{2}-2\)
\(P=\left|x_1\cdot x_2-3\left(x_1+x_2\right)\right|\)
\(=\left|\dfrac{m^2+4m+3}{2}-3\cdot\dfrac{-2m-2}{2}\right|\)
\(=\left|\dfrac{m^2+4m+3+6m+6}{2}\right|=\left|\dfrac{m^2+10m+9}{2}\right|>=0\)
Dấu '=' xảy ra khi |m2+10m+9|=0
=>(m+1)(m+9)=0
=>\(\left[{}\begin{matrix}m=-1\left(nhận\right)\\m=-9\left(loại\right)\end{matrix}\right.\)