Mọi người giải giúp em với ạ! Em xin cảm ơn!
Cho đường thẳng d: y=x+m và hàm số y=x^2 - 3x + 2m + 1 có đồ thị (Pm). Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để (Pm) cắt trục hoành tại hai điểm phân biệt A,B có nằm về hai phái của trục hoành. Tính số phần tử S
tìm tất cả các giá trị của m sao cho hai parabol y=x^2+mx+(m+1)^2 và y=-x^2-(m+2)x-2(m+1) cắt nhau tại 2 điểm có hoành độ lần lượt là x1,x2 thỏa mãn P=|x1x2-3(x1+x2)| đạt GTLN
tìm tập hợp tất cả các giá trị nguyên dương của tham số m để đồ thị hàm số y=x2 +4x+2m-10 cắt trục hoành tại 2 điểm phân biệt nằm về hai phía của trục tung. tính số phần tử của S
gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đồ thị hàm số y= x2-10x-2m+5 cắt trục hoành tại 2 điểm phân biệt có hoành độ dương . tính số phần tử của S
cho y=X2_4x+1 a/ khảo sát và vẽ đồ thị b/ tìm tọa độ giao ddiemr giữa P và dcos y=2x-4. tính độ dài độ dài MN c/tìm hàm số bậc hai mx2+nx+k(m>0) , có đồ thị đi qua đỉnh P đồng thời cắt trục hoành tại hai điểm A,B phân biệt và cắt trục tung tại điểm C( 0;5) sao cho SABC=10
câu 19: Tìm giá trị thực của tham số m khác 0 để hàm số y= mx^2-2mx-3m-2 có giá trị nhỏ nhất bằng -10 trên R
câu 20: Gọi S là tập hợp tất cả giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y=f(x)=4x^2-4mx+m^2-2m trên đoạn [-2;0] bằng 3 . Tính tổng T các phần tử của S
Tính a2 + b2 + c2 biết hàm số y = ax2 + bx +c (a khác 0) đạt giá trị nhỏ nhất bằng -1/4 khi x = 5/2 và đồ thị cắt trục Ox tại hai điểm sao cho tích hai hoành độ bằng 6
Xác định hàm số bậc hai \(y=ax^2-4x+c\), biết rằng đồ thị của nó
a) Đi qua hai điểm \(A\left(1;-2\right);B\left(2;3\right)\)
b) Có đỉnh là \(I\left(-2;-1\right)\)
c) Có hoành độ đỉnh là -3 và đi qua điểm \(P\left(-2;1\right)\)
d) Có trục đối xứng là đường thẳng \(x=2\) và cắt trục hoành tại điểm \(M\left(3;0\right)\)
Đồ thị hàm số y= -x2 + 4x -3 cắt trục hoành tại hai điểm phân biệt có hoành độ p và q ( p < p ). Tổng p + 2q bằng