Ôn tập chương II

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoàng Anh

tìm tất cả các giá trị của m sao cho hai parabol \(y=x^2+mx+\left(m+1\right)^2\) và \(y=-x^2-\left(m+2\right)x-2\left(m+1\right)\) cắt nhau tại 2 điểm có hoành độ lần lượt là \(x_1;x_2\) thỏa mãn \(P=\left|x_1x_2-3\left(x_1+x_2\right)\right|\) đạt giá trị lớn nhất.

Nguyễn Lê Phước Thịnh
30 tháng 11 2023 lúc 23:16

Phương trình hoành độ giao điểm là:

\(x^2+mx+\left(m+1\right)^2=-x^2-\left(m+2\right)x-2\left(m+1\right)\)

=>\(x^2+mx+\left(m+1\right)^2+x^2+\left(m+2\right)x+2\left(m+1\right)=0\)

=>\(2x^2+\left(2m+2\right)x+2\left(m+1\right)+\left(m+1\right)^2=0\)

=>\(2x^2+\left(2m+2\right)x+\left(m^2+4m+3\right)=0\)

\(\text{Δ}=\left(2m+2\right)^2-4\cdot2\cdot\left(m^2+4m+3\right)\)

\(=4m^2+8m+4-8m^2-32m-24\)

\(=-4m^2-24m-20\)

\(=-4\left(m^2+6m+5\right)=-4\left(m+1\right)\left(m+5\right)\)

Để (P1) cắt (P2) tại hai điểm phân biệt thì Δ>0

=>\(-4\left(m+1\right)\left(m+5\right)>0\)

=>\(\left(m+1\right)\left(m+5\right)< 0\)

TH1: \(\left\{{}\begin{matrix}m+1>0\\m+5< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\)

=>Loại

TH2: \(\left\{{}\begin{matrix}m+1< 0\\m+5>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< -1\\m>-5\end{matrix}\right.\)

=>-5<m<-1

Theo Vi-et, ta có: \(x_1+x_2=\dfrac{-\left(2m+2\right)}{2}=-m-1;x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+4m+3}{2}\)

\(P=\left|x_1x_2-3\left(x_1+x_2\right)\right|\)

\(=\left|\dfrac{m^2+4m+3}{2}-3\left(-m-1\right)\right|\)

\(=\left|\dfrac{m^2+4m+3}{2}+3m+3\right|\)

\(=\dfrac{\left|m^2+4m+3+6m+6\right|}{2}=\dfrac{\left|m^2+10m+9\right|}{2}\)

Biểu thức này không có giá trị lớn nhất nha bạn


Các câu hỏi tương tự
Nguyễn Hoàng Anh
Xem chi tiết
Nguyễn Hoàng Anh
Xem chi tiết
Nguyễn Hoàng Anh
Xem chi tiết
Nguyễn Hoàng Anh
Xem chi tiết
NGUYEN THI DIEP
Xem chi tiết
Phụng Nguyễn Thị
Xem chi tiết
Nhi Võ Lan
Xem chi tiết
Nguyễn Thị Lan Anh
Xem chi tiết
ĐỖ THỊ THANH HẬU
Xem chi tiết