\(\sqrt{x^2-4x+5}=\sqrt{x^2-4x+4+1}=\sqrt{\left(x-2\right)^2+1}>=1\forall x\)
=>\(y=\dfrac{1}{\sqrt{x^2-4x+5}}< =\dfrac{1}{1}=1\forall x\)
Vậy: TGT là \(T=(-\infty;1]\)
\(\sqrt{x^2-4x+5}=\sqrt{x^2-4x+4+1}=\sqrt{\left(x-2\right)^2+1}>=1\forall x\)
=>\(y=\dfrac{1}{\sqrt{x^2-4x+5}}< =\dfrac{1}{1}=1\forall x\)
Vậy: TGT là \(T=(-\infty;1]\)
tìm tập giá trị của hàm số y = \(\dfrac{\sqrt[]{x}-2}{x-4}\)
Tìm tập xác định của hàm số :
a. y=\(\dfrac{1}{x^2-2x}+\sqrt{x^2-1}\)
b.y=\(\sqrt{x+1}+\sqrt{5-3x}\)
c.y=\(\sqrt{5x+3}+\dfrac{2x}{\sqrt{3-x}}\)
d.y=\(\dfrac{3x}{\sqrt{4-x^2}}+\sqrt{1+x}\)
e.y=\(\dfrac{5-2x}{(2-3x)\sqrt{1-6x}}\)
Tìm giá trị của tham số m để hàm số \(y=\dfrac{1}{\sqrt{x^2-2x-m}}\) xác định trên [2; 3]
Tìm tập xác định của hàm số :
f. y=\(\dfrac{x}{\sqrt{x+1}-\sqrt{7-2x}}\)
g.y=\(\dfrac{2}{\sqrt{x+1}}+\dfrac{\sqrt{x+2}}{x^2-4}\)
h.y=\(\dfrac{3}{|x+1|-|x-2|}\)
\(\dfrac{x}{1-x^2}-\sqrt{-x}\)
Tìm tập xác định của các hàm số sau
Tìm tập xác định của các hàm số :
a. \(y=\dfrac{2}{x+1}+\sqrt{x+3}\)
b. \(y=\sqrt{2-3x}-\dfrac{1}{\sqrt{1-2x}}\)
c. \(y=\left\{{}\begin{matrix}\dfrac{1}{x+3};\left(x\ge1\right)\\\sqrt{2-x};\left(x< 1\right)\end{matrix}\right.\)
Tìm tập xác định của các hàm số sau :
1 ) \(y=\dfrac{3x-2}{x^2-4x+3}\)
2 ) \(y=2\sqrt{5-4x}\)
3 ) y = \(\dfrac{2}{\sqrt{x+3}}+\sqrt{5-2x}\)
4 ) \(y=\sqrt{9-x}+\dfrac{1}{\sqrt{x+2}-2}\)
5 ) \(y=\dfrac{-3x}{x+2}\)
6) \(y=\sqrt{-2x-3}\)
7 ) \(y=\dfrac{3-x}{\sqrt{x-4}}\)
8 ) \(y=\dfrac{2x-5}{\left(3-x\right)\sqrt{5-x}}\)
9 ) \(y=\sqrt{2x+1}+\sqrt{4-3x}\)
HELP ME !!!!!!
Tìm GTNN của hàm số y = \(\sqrt{x^2+4x=8}+\sqrt{x^2-4x+8}\)
tìm tập xác định của hàm số y = \(\sqrt{x+\sqrt{x^2-x+1}}\)