Ta có : \(\dfrac{a}{b}\) tối giản \(\Leftrightarrow\dfrac{b}{a}\) tối giản \(\left(a;b\in N\right)\)
\(\Leftrightarrow\dfrac{7}{n+9};\dfrac{8}{n+10};..........;\dfrac{31}{n+33}\) tối giản khi và chỉ khi :
\(\dfrac{n+9}{7};\dfrac{n+10}{8};.......;\dfrac{n+33}{31}\) tối giản
\(\Leftrightarrow\dfrac{\left(n+2\right)+7}{7};\dfrac{\left(n+2\right)+8}{8};........;\dfrac{\left(n+2\right)+31}{31}\)
\(\Leftrightarrow n+2⋮̸\) \(7;8;.......;33\)
Mà \(n+2\) nhỏ nhất do \(n\) nhỏ nhất
\(\Leftrightarrow n+2=35\)
\(\Leftrightarrow n=33\)
Vậy ...