Ta có:
\(\dfrac{9^{20}\times2^{27}\times22^5}{4^8\times18^{18}\times33^4}=\dfrac{\left(3^2\right)^{20}\times2^{27}\times\left(2\times11\right)^5}{\left(2^2\right)^8\times\left(2\times3^2\right)^{18}\times\left(3\times11\right)^4}=\dfrac{3^{40}\times2^{27}\times2^5\times11^5}{2^{16}\times2^{18}\times3^{36}\times3^4\times11^4}=\dfrac{2^{32}\times3^{40}\times11^5}{2^{34}\times3^{40}\times11^4}=\dfrac{11}{4}\)
\(\Rightarrow\dfrac{a}{4}=\dfrac{11}{4}\Rightarrow a=11\)
Vậy \(a=11\).