\(\dfrac{1}{n+3}\);\(\dfrac{2}{n+4}\);...;\(\dfrac{2001}{n+2003}\);\(\dfrac{2002}{n+2004}\)
=\(\dfrac{1}{\left(n+2\right)+1}\);\(\dfrac{2}{\left(n+2\right)+2}\);...;\(\dfrac{2001}{\left(n+2\right)+2001}\);\(\dfrac{2002}{\left(n+2\right)+2002}\)
Vậy để các phân số trên tối giản thì n+2 phải nguyên tố với các số 1;2;...;2002
Mà để n nhỏ nhất thì n phải là số nguyên tố nhỏ nhất và phải lớn hơn 2002
Vậy n nhỏ nhất là 2003