Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

Sáng
3 tháng 9 2018 lúc 9:46

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Leftrightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}\)

\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)

\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

\(\Leftrightarrow x+2004=0\)

\(\Leftrightarrow x=-2004\)

Trần Minh Hoàng
3 tháng 9 2018 lúc 9:47

\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)

\(\Rightarrow\dfrac{x+4}{2000}+1+\dfrac{x+3}{2001}+1=\dfrac{x+2}{2002}+1+\dfrac{x+1}{2003}+1\)

\(\Rightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}=\dfrac{x+2004}{2002}+\dfrac{x+2004}{2003}\)

\(\Rightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}\right)=\left(x+2004\right)\left(\dfrac{1}{2002}+\dfrac{1}{2003}\right)\)

\(\dfrac{1}{2000}+\dfrac{1}{2001}\ne\dfrac{1}{2002}+\dfrac{1}{2003}\) nên \(x+2004=0\Rightarrow x=-2004\)

Vậy, x = -2004


Các câu hỏi tương tự
Khánh Huyền
Xem chi tiết
hoc24.vn
Xem chi tiết
Chu Thanh Vân
Xem chi tiết
Jenny Zodiac
Xem chi tiết
Ruby
Xem chi tiết
crewmate
Xem chi tiết
Nguyễn Đăng Khoa
Xem chi tiết
England
Xem chi tiết
Hoàng Thúy
Xem chi tiết