Ta có \(A=\left(\overline{ab}\right)^2-\left(\overline{ba}\right)^2=\left(10a+b\right)^2-\left(10b+a\right)^2\)
\(A=\left(10a+b-10b-a\right)\left(10a+b+10b+a\right)=\left(9a-9b\right)\left(11a+11b\right)\)
\(A=9.11.\left(a-b\right)\left(a+b\right)\)
Do A là SCP và 9 là SCP \(\Rightarrow11\left(a-b\right)\left(a+b\right)\) là SCP
\(\Rightarrow\left(a-b\right)\left(a+b\right)=11k\) với k là SCP \(\Rightarrow\left(a-b\right)\left(a+b\right)\) là ước của 11
Lỡ tay bấm nút gửi, làm tiếp xuống vậy :D
Do \(\left\{{}\begin{matrix}0\le a-b\le9\\1\le a+b\le18\end{matrix}\right.\) và 11 là số nguyên tố
\(\Rightarrow a+b=11\) và \(a-b\) là SCP
Ta có các cặp số sau:
\(\left\{{}\begin{matrix}a+b=11\\a-b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=6\\b=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=11\\a-b=4\end{matrix}\right.\) \(\Rightarrow\) không có a, b tự nhiên thỏa mãn
\(\left\{{}\begin{matrix}a+b=11\\a-b=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=10>9\\b=1\end{matrix}\right.\) (loại)
Vậy số cần tìm là 65