Cho a;b;c là các số thực dương thỏa mãn: a+b+c=3.
Tìm Max của: \(A=\dfrac{1}{a+3}+\dfrac{1}{b+3}+\dfrac{1}{c+3}-\dfrac{1}{3\left(ab+bc+ac\right)}\)
Nhờ các bạn Giúp mk với ạ Mk xin cảm ơn
Tìm một số có 8 chữ số: \(\overline{a_1a_2a_3a_4a_5a_6a_7a_8}\) thỏa mãn điều kiện a và b sau:
a. \(\overline{a_1a_2a_3}=\left(\overline{a_7a_8}\right)^2\)
b. \(\overline{a_4a_5a_6a_7a_8}=\left(\overline{a_7a_8}\right)^3\)
Giải chi tiết hộ em ạ!
@Akai Haruma @Nguyễn Thị Ngọc Thơ
cho a, b, c là các số nguyên dương thỏa mãn \(ab+bc+ca+2\left(a+b+c\right)=8045\) và \(abc-a-b-c=-2\). tìm a+b+c
tìm các số tự nhiên \(\overline{abc}\) có 3 chữ số sao cho
\(\left\{{}\begin{matrix}\overline{abc}=n^2-1\\\overline{cba}=\left(n-2\right)^2\end{matrix}\right.\) (với n là số nguyên lớn hơn 2)
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
Suppose a and b are nonzero decimal digits ( 1-9), with the property that
\(\left(\overline{aa}\right)^2+\left(\overline{bb}\right)^2=\overline{aabb}\)
What is a+b ?
CMR nếu \(\left(a^2-bc\right).\left(b-abc\right)=\left(b^2-ac\right).\left(a-abc\right)\) và các số a, b, c, a-b khác 0 thì \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c\)
Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1
Chứng minh rằng : \(P=\dfrac{1}{\left(a+1\right)^2}+\dfrac{1}{\left(b+1\right)^2}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{2}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge1\)
Cho các số thực a;b;c thỏa mản:
CMR: \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^3b+b^3c+c^3a\right)\)
Giúp mk với ạ