tìm số \(\overline{ab}\) biết \(\left(\overline{ab}\right)^2-\left(\overline{ba}\right)^2\) là 1 SCP
Cho 2 đa thức ƒ (x)và g(x)có hệ số nguyên thỏa mãn ƒ (x^3)+g(x^3)⋮x^2−x+1
Chứng minh: \(\left\{{}\begin{matrix}f\left(x\right)\\g\left(x\right)\end{matrix}\right.\)\(⋮x+1\)
tìm các số a,b,c thỏa mãn
\(\overline{abc^a}=\overline{bc\left(a-1\right)bc}\)
giúp mình với ạ
Tìm một số có 8 chữ số: \(\overline{a_1a_2a_3a_4a_5a_6a_7a_8}\) thỏa mãn điều kiện a và b sau:
a. \(\overline{a_1a_2a_3}=\left(\overline{a_7a_8}\right)^2\)
b. \(\overline{a_4a_5a_6a_7a_8}=\left(\overline{a_7a_8}\right)^3\)
Giải chi tiết hộ em ạ!
@Akai Haruma @Nguyễn Thị Ngọc Thơ
Bài 3:
1) Cho a, b, c đôi một khác nhau thỏa mãn: ab+bc+ca=1
Tính giá trị biểu thức: \(A=\frac{\left(a+b\right)^2\left(b+c^2\right)\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
2) Cho \(\left\{{}\begin{matrix}x+y=a+b\\x^2+y^2=a^2+b^2\end{matrix}\right.\)
Chứng minh rằng với mọi số nguyên dương n ta có: xn+yn=an+bn.
Cho \(\left\{{}\begin{matrix}x^2-yz=a\\y^2-xz=b\\z^2-xy=c\end{matrix}\right.\) với x, y, z thuộc Z và x, y, z khác 0. Chứng minh:\(ax+by+cz⋮x+y+z\); a, b, c, d là các số nguyên khác nhau
a, CMR: 9x2y2+ y2- 6xy - 2y +2≥0
b, cho ba số thuộc số âm x, y, z
thỏa mãn\(\left\{{}\begin{matrix}xyz=1\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}< x+y+z\end{matrix}\right.\)
CMR: Có đúng trong ba số x,y, z lớn hơn 1
cho các số x và y thỏa mãn \(\left\{{}\begin{matrix}x^3-3x^2+6x+1=0\\y^3-6y^2+15y-9=0\end{matrix}\right.\).Tính \(A=x^2+y^2+y-x-2xy\)
Cho x, y, z là 3 số khác 0 thỏa mãn : \(\left\{{}\begin{matrix}x+2y+3z=4\\\dfrac{1}{x}+\dfrac{1}{2y}+\dfrac{1}{3z}=0\end{matrix}\right.\)
Tính P = \(4y^2+x^2+9z^2\)