\(\left(11a\right)^2+\left(11b\right)^2=1100a+11b\)
\(\Leftrightarrow11a^2+11b^2=100a+b\)
\(\Leftrightarrow11\left(a^2+b^2\right)=99a+a+b\)
\(\Rightarrow a+b⋮11\)
Furthermore, \(1\le a;b\le9\Rightarrow2\le a+b\le18\)
\(\Rightarrow a+b=11\)
\(\left(11a\right)^2+\left(11b\right)^2=1100a+11b\)
\(\Leftrightarrow11a^2+11b^2=100a+b\)
\(\Leftrightarrow11\left(a^2+b^2\right)=99a+a+b\)
\(\Rightarrow a+b⋮11\)
Furthermore, \(1\le a;b\le9\Rightarrow2\le a+b\le18\)
\(\Rightarrow a+b=11\)
Suppose \(\overline{ab}\) is a 2 digit number with the property that the 6 digit number \(\overline{1234ab}\) is divisible by 9 and \(\overline{ab1234}\) is divisible by 11. What is a2 - b2
Tìm a,b biết
\(\left(\text{a}-1\right)^2+\left(b-1^2\right)=\overline{\text{a}b}\)
tìm số \(\overline{ab}\) biết \(\left(\overline{ab}\right)^2-\left(\overline{ba}\right)^2\) là 1 SCP
Tìm một số có 8 chữ số: \(\overline{a_1a_2a_3a_4a_5a_6a_7a_8}\) thỏa mãn điều kiện a và b sau:
a. \(\overline{a_1a_2a_3}=\left(\overline{a_7a_8}\right)^2\)
b. \(\overline{a_4a_5a_6a_7a_8}=\left(\overline{a_7a_8}\right)^3\)
Giải chi tiết hộ em ạ!
@Akai Haruma @Nguyễn Thị Ngọc Thơ
tìm các số tự nhiên \(\overline{abc}\) có 3 chữ số sao cho
\(\left\{{}\begin{matrix}\overline{abc}=n^2-1\\\overline{cba}=\left(n-2\right)^2\end{matrix}\right.\) (với n là số nguyên lớn hơn 2)
tìm các số a,b,c thỏa mãn
\(\overline{abc^a}=\overline{bc\left(a-1\right)bc}\)
giúp mình với ạ
1) ABC is a triangle where M is the midpoint of segment BC.
MD and ME are two bisectors of triangles AMB and AMC respectively.
If AM= m; BC = a . Then DE = ???
2)\(\dfrac{1}{\left(x+29\right)^2}+\dfrac{1}{\left(x+30\right)^2}=\dfrac{5}{4}\)
What is the product of all real solutions to the equation above?
3) The sum of all possible natural numbers n such that
\(n^2+n+1589\) is a perfect square is.....
4) Given that x is a positive integer such that x and x+99 are perfect squares
The sum of integer x is ...
5)The operation @ on two numbers produces a number equal to their sum minus 2. The value of
(...((1@2)@3....@2017)
6) Given f(x)=\(\dfrac{x^2}{2x-2x^2-1}\)
=> \(f\left(\dfrac{1}{2016}\right)+f\left(\dfrac{2}{2016}\right)+f\left(\dfrac{3}{2016}\right)+...+f\left(\dfrac{2016}{2016}\right)\)
Các bn giúp mk vs >>> tks nha!!!
cho f(x) là đa thức với hệ số nguyên; \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\) ( \(a_i\in Z,i=\overline{0,n}\) )
a,b là 2 số nguyên khác nhau. a) Cmr: \(f\left(a\right)-f\left(b\right)⋮a-b\)
b) Áp dụng : Cmr: không có đa thức f(x) nào với hệ số nguyeencos thể có giá trị f(7) = 5, f(15) = 9
Given that \(f\left(x\right)=\dfrac{x^2}{2x-2x^2-1}\)
Caculate:
\(f\left(\dfrac{1}{2016}\right)+f\left(\dfrac{2}{2016}\right)+f\left(\dfrac{3}{2016}\right)+...+f\left(\dfrac{2015}{2016}\right)+f\left(\dfrac{2016}{2016}\right)\)
(Input the answer as a decimal in its simplest form)