a) 2n + 1 + 12 -2n =13
6-n(ư)13 = -1; 1; -13 ; 13
n = 7; 19
b) tương tự, k làm dc mk sẽ làm tiếp
a) 2n + 1 + 12 -2n =13
6-n(ư)13 = -1; 1; -13 ; 13
n = 7; 19
b) tương tự, k làm dc mk sẽ làm tiếp
Chứng minh rằng với \(n\in N\)* thì:
a, \(1^2+2^2+3^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
b, \(1^3+2^3+3^3+...+n^3=\left(\frac{n\left(n+1\right)}{2}\right)^2\)
c, \(n+2\left(n-1\right)+3\left(n-2\right)+...+n=\frac{n\left(n+1\right)\left(n+2\right)}{6}\)
Tính:
\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\)
CMR với n thuộc N thì
\(A=\left(2n\right)^3+\left(3n^2\right)+n\) chia hết cho 6 .
Chứng minh rằng:\(11^{n+2}+12^{2n+1}⋮133\left(n\in N\right)\)
cm biểu thức
\(n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với mọi số nguyên n
Rút gọn biểu thức sau:
\(A=\left(1+\frac{1}{3}\right).\left(1+\frac{1}{8}\right).\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\) (n nguyên dương)
\(\frac{1.3.5...39}{21.22.23...40}=\frac{1}{2^{20}}\)
\(\frac{1.3.5...\left(2n+1\right)}{\left(n+1\right)\left(n+2\right)...2n}=\frac{1}{2^n}\) (n thuộc N*)
Chứng minh 2 câu trên
Chứng minh rằng với mọi số nguyên dương n thì:
\(5n=1^2+2^2+3^2+...+n^2=\frac{1}{6}n\left(n+1\right)\left(2n+1\right)\)
(quy nạp)
Tinhs
\(\frac{\left(\frac{-1}{2}\right)^{2n}}{\left(\frac{-1}{2}\right)^n}\)