a) Tìm nghiệm nguyên của phương trình: \(2y^2-x+2xy=y+4\)
b) Giải phương trình : ( \(1+x\sqrt{x^2+1}\))(\(\sqrt{x^2+1}-x\)) = 1
Cho biểu thức:
A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}}{x-1}\)
a.Rút gọn biểu thức A
b.Tìm m để phương trình \(mA=\sqrt{x}-2\) có 2 nghiệm phân biệt
Giải phương trình:
\(\sqrt{x+2+2\sqrt{x+1}}+\sqrt{x+10-6\sqrt{x+1}}=2\sqrt{x+2-2\sqrt{x+1}}\)
Giải phương trình:
\(x+y+z+11=2\sqrt{x}+4\sqrt{y-1}+6\sqrt{z-2}\)
Bài 1: Giải phương trình
\(\sqrt{x^2-25}-6=3\sqrt{x+5}-2\sqrt{x-5}\)
Bài 2: Cho biểu thức A = \(\dfrac{\sqrt{x}}{\sqrt{x}-3};\) B = \(\dfrac{7}{\sqrt{x}+1}-\dfrac{12}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}\) .
a) Rút gọn M = A – B
b) Tìm giá trị nguyên nhỏ nhất để biểu thức M đạt giá trị nguyên nhỏ nhất.
Giúp mình với, mình đang cần gấp ạ
1.Giải hệ phương trình:
\(\left\{{}\begin{matrix}2x+y=5\\3x-2y=11\end{matrix}\right.\)
2.Rút gọn biểu thức:
B=\(\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\right):\dfrac{1}{\sqrt{x}+2}\)với x>0;x\(\ne\)9
Giải các phương trình sau:
a)\(\sqrt[3]{9-x}+\sqrt[3]{7+x}=4\)
b)\(\sqrt{x-1}\cdot\sqrt[4]{x^2-4}=\sqrt{x-2}\cdot\sqrt[4]{x^2-1}\)
c)\(\sqrt[4]{9-x^2}+\sqrt{x^2-1}-2\sqrt{2}=\sqrt[6]{x-3}\)
Giair phương trình
\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-1}+\sqrt{x^2+x-6}\)
1.P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4\sqrt{x}-1}{c-4}\right):\dfrac{1}{\sqrt{c}+2}\)
Tìm x nguyên để P nguyên