Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{4\sqrt{x}-1}{x-4}\right):\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x-2\sqrt{x}-x-2\sqrt{x}+4\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+2}{1}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)
Để P nguyên thì \(\sqrt{x}-2\in\left\{-1;1\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{1;3\right\}\)
hay \(x\in\left\{1;9\right\}\)