cho biểu thức P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{x+2\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)\) với x>0
1.rút gọn biểu thức P
2.tìm các soosnguyeen x thả mãn P>0
cho biểu thức P=\(\left(\dfrac{1}{\sqrt{x}}-\sqrt{x}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\) với x>0
1.rút gọn P
2.tính giá trị của P khi x=\(\dfrac{2}{2-\sqrt{3}}\)
cho biểu thức P=\(\left(\dfrac{1}{\sqrt{x}}-\sqrt{x}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\) với x>0
1.rút gọn P
2.tính giá trị của P khi x=\(\dfrac{2}{2-\sqrt{3}}\)
cho biểu thức P=\(\left(\dfrac{1}{\sqrt{x}}-\sqrt{x}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\) với x>0
1.rút gọn P
2.tính giá trị của P khi x=\(\dfrac{2}{2-\sqrt{3}}\)
cho biểu thức P=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}:\left(\dfrac{x-2}{x-4}-\dfrac{1}{\sqrt{x}+2}\right)\) với x>0;x\(\ne\)1;x\(\ne\)4
1.rút gọn biểu thức P
2.tìm x thỏa mãn P>1
3.tính giá trị của P khi x=\(\dfrac{1}{4}\)
cho biểu thức P=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}:\left(\dfrac{x-2}{x-4}-\dfrac{1}{\sqrt{x}+2}\right)\) với x>0;x\(\ne\)1;x\(\ne\)4
1.rút gọn biểu thức P
2.tìm x thỏa mãn P>1
3.tính giá trị của P khi x=\(\dfrac{1}{4}\)
Cho biểu thức:
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
với x > 0 , x ≠ 1
a. Rút gọn B
b. Tìm x để B < 0
Cho biểu thức:
B=\(\left(\dfrac{1}{3-\sqrt{x}}-\dfrac{1}{3+\sqrt{x}}\right).\dfrac{3+\sqrt{x}}{\sqrt{x}}\)( với x>0;x\(\ne\)9)
Rút gọn biểu thức và tìm tất cả các giá trị nguyên của x để B>\(\dfrac{1}{2}\)
* Cho biểu thức:
A= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{1+\sqrt{x}}+\dfrac{2}{x-1}\right)\)
a. Tìm điều kiện của x để biểu thức A có nghĩa
b. Rút gọn biểu thức A
c. Tính các giá trị của x để A>0