Do \(\left\{{}\begin{matrix}\left|sinx\right|\le1\\\left|cosx\right|\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}sin^8x\le sin^2x\\cos^8x\le cos^2x\end{matrix}\right.\)
\(\Rightarrow P=sin^8x+cos^8x\le sin^2x+cos^2x=1\)
\(P=sin^8x+cos^8x\ge\frac{1}{2}\left(sin^4x+cos^4x\right)^2\ge\frac{1}{2}\left(\frac{1}{2}\left(sin^2x+cos^2x\right)^2\right)^2=\frac{1}{8}\)