Xét hàm:
\(f\left(x\right)=\sqrt[4]{x^2+1}-\sqrt[]{x}\) với \(x\ge0\)
\(f'\left(x\right)=\dfrac{x}{2\sqrt[4]{\left(x^2+1\right)^3}}-\dfrac{1}{2\sqrt[]{x}}=\dfrac{x\sqrt[]{x}-\sqrt[4]{\left(x^2+1\right)^3}}{2\sqrt[4]{x^2\left(x^2+1\right)^3}}\)
Ta có: \(\sqrt[4]{\left(x^2+1\right)^3}>\sqrt[4]{\left(x^2+0\right)^3}=x\sqrt[]{x}\Rightarrow x\sqrt[]{x}-\sqrt[4]{\left(x^2+1\right)^3}< 0\) ; \(\forall x>0\)
\(\Rightarrow\) Hàm nghịch biến trên R \(\Rightarrow f\left(x\right)\le f\left(0\right)=1\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt[4]{x^2+1}-x\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{1}{\left(\sqrt[4]{x^2+1}+x\right)\left(\sqrt[]{x^2+1}+x^2\right)}=0\)
\(\Rightarrow f\left(x\right)>0\) ; \(\forall x>0\)
\(\Rightarrow0< f\left(x\right)\le1\Rightarrow\) phương trình có nghiệm khi \(0< m\le1\)