Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần T.Anh

tìm m để pt sau có nghiệm:

\(\sqrt[4]{x^2+1}-\sqrt{x}=m\)

Nguyễn Việt Lâm
8 tháng 8 2021 lúc 15:44

Xét hàm:

\(f\left(x\right)=\sqrt[4]{x^2+1}-\sqrt[]{x}\) với \(x\ge0\)

\(f'\left(x\right)=\dfrac{x}{2\sqrt[4]{\left(x^2+1\right)^3}}-\dfrac{1}{2\sqrt[]{x}}=\dfrac{x\sqrt[]{x}-\sqrt[4]{\left(x^2+1\right)^3}}{2\sqrt[4]{x^2\left(x^2+1\right)^3}}\)

Ta có: \(\sqrt[4]{\left(x^2+1\right)^3}>\sqrt[4]{\left(x^2+0\right)^3}=x\sqrt[]{x}\Rightarrow x\sqrt[]{x}-\sqrt[4]{\left(x^2+1\right)^3}< 0\) ; \(\forall x>0\)

\(\Rightarrow\) Hàm nghịch biến trên R \(\Rightarrow f\left(x\right)\le f\left(0\right)=1\)

\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt[4]{x^2+1}-x\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{1}{\left(\sqrt[4]{x^2+1}+x\right)\left(\sqrt[]{x^2+1}+x^2\right)}=0\)

\(\Rightarrow f\left(x\right)>0\) ; \(\forall x>0\)

\(\Rightarrow0< f\left(x\right)\le1\Rightarrow\) phương trình có nghiệm khi \(0< m\le1\)


Các câu hỏi tương tự
Trần T.Anh
Xem chi tiết
BongBóng
Xem chi tiết
Trần T.Anh
Xem chi tiết
Trần T.Anh
Xem chi tiết
Trần T.Anh
Xem chi tiết
Trần T.Anh
Xem chi tiết
Zin Như
Xem chi tiết
Phạm Thị Trang
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết