Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sengoku

tìm m để phương trình có nghiệm \(\sqrt{m+2\sqrt{m+2sinx}}=sinx\)

Nguyễn Việt Lâm
12 tháng 10 2020 lúc 13:25

Nếu quen rồi thì đồng nhất \(sinx\) với \(x\in\left[0;1\right]\)

Còn không thì đặt \(sinx=t\in\left[0;1\right]\) đồng thời đặt \(\sqrt{m+2t}=a\ge0\)

Ta được hệ: \(\left\{{}\begin{matrix}\sqrt{m+2a}=t\\\sqrt{m+2t}=a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+2a=t^2\\m+2t=a^2\end{matrix}\right.\) \(\Rightarrow2a-2t=t^2-a^2\)

\(\Leftrightarrow\left(t-a\right)\left(t+a+2\right)=0\)

\(\Leftrightarrow t=a\)

\(\Leftrightarrow\sqrt{m+2t}=t\Leftrightarrow m=t^2-2t\)

Bây giờ khảo sát miền giá trị của \(f\left(t\right)=t^2-2t\) trên \(\left[0;1\right]\) là ra miền giá trị của m

Khách vãng lai đã xóa

Các câu hỏi tương tự
vvvvvvvv
Xem chi tiết
Thảo Phương
Xem chi tiết
Măm Măm
Xem chi tiết
nanako
Xem chi tiết
nanako
Xem chi tiết
vvvvvvvv
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Hoàng Anh
Xem chi tiết